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Abstract

mutable targets of the EBOV.

RNA virus

The recent outbreak of the human Zaire ebolavirus (EBOV) epidemic is spiraling out of control in West Africa.
Human EBOV hemorrhagic fever has a case fatality rate of up to 90%. The EBOV is classified as a biosafety level 4
pathogen and is considered a category A agent of bioterrorism by Centers for Disease Control and Prevention, with
no approved therapies and vaccines available for its treatment apart from supportive care. Although several
promising therapeutic agents and vaccines against EBOV are undergoing the Phase | human trial, the current
epidemic might be outpacing the speed at which drugs and vaccines can be produced. Like all viruses, the EBOV
largely relies on host cell factors and physiological processes for its entry, replication, and egress. We have reviewed
currently available therapeutic agents that have been shown to be effective in suppressing the proliferation of the
EBOV in cell cultures or animal studies. Most of the therapeutic agents in this review are directed against non-mutable
targets of the host, which is independent of viral mutation. These medications are approved by the Food and Drug
Administration (FDA) for the treatment of other diseases. They are available and stockpileable for immediate use. They
may also have a complementary role to those therapeutic agents under development that are directed against the
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Background

The recent outbreak of the human Zaire ebolavirus
(EBOV) infection starting in West African countries has
resulted in 15,351 infected patients, as of 18" of November
2014. A total of 5,459 deaths have been reported in six
affected countries (Guinea, Liberia, Mali, Sierra Leone,
Spain, and the United States of America) and two previ-
ously affected countries (Nigeria and Senegal) [1].
Apart from supportive care, neither a licensed vaccine
nor a specific therapy is available for the treatment of
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the human EBOV infection [2]. The World Health
Organization (WHO) has considered that it is ethically
acceptable to offer unproven interventions that have
shown promising results in laboratory and animal models,
but have not yet been evaluated for safety and efficacy in
humans as potential sources of treatment or prevention
[3]. Several promising therapeutic agents have been identi-
fied for the treatment and immunization of the EBOV.
These may include monoclonal antibody (mAbs)-based
therapies (e.g. ZMapp), anti-sense phosphorodiamidate
morpholino oligomers (PMO AVI-6002), lipid nanoparti-
cle small interfering RNA (LNP-siRNA: TKM-Ebola), and
an EBOV glycoprotein-based vaccine using live-attenuated
recombinant vesicular stomatitis virus (rVSV-EBOGP) or
a chimpanzee adenovirus (rChAd-EBOGP)-based vector.
Human trial results of these agents would not be available
until next year. Moreover, existing supplies of all these
experimental medications and vaccines for compassionate
use are either extremely limited or exhausted [4-6]. To
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combat such an unprecedented global public-health crisis
before these experimental agents are available, alternative
available interventions that can target different steps in
the replication cycle of the EBOV should be explored in
the management of the human EBOV infection as contin-
gency preparation for the international dissemination of
the EBOV outbreak in West Africa. We have reviewed
currently available therapeutic agents that have shown to
be effective in suppressing the proliferation of the EBOV
in cell cultures or animal studies. We propose a thera-
peutic regimen to supplement the current supportive ther-
apy aiming to reduce viral load, the most important factor
in the determination of mortality. Through viral load sup-
pression, we may be able to prolong a patient’s survival in
order to provide a better chance for the patient to develop
natural immune defense against the EBOV.

Discussion

The genome of the Ebola virus

The EBOV is an enveloped filamentous RNA virus
belonging to the family Filoviridae. The 19-kb linear,
non-segmented, negative-sense, single-stranded RNA
genome of the EBOV encodes seven structural proteins
and two non-structural proteins in the following order
within the genome: 3’ non-coding region (leader),
nucleoprotein (NP), virion protein 35 (VP35), VP40, 3
glycoproteins (sGP/ssGP/GP1,2), VP30, VP24, RNA-
dependent RNA-polymerase protein (L-polymerase),
and 5’ non-coding region [7].

The glycoproteins of the Ebola virus

The EBOV genome encodes one transmembrane protein
GP1,2 (GP1-GP2) and two secreted non-structural pro-
teins: secretary glycoprotein (sGP) and small soluble glyco-
protein (ssGP). A small soluble delta peptide (A-peptide) is
secreted from EBOV-infected cells after the carboxyl-
terminal cleavage of sGP [8]. GP1,2 is produced through
transcriptional RNA editing as a precursor for 676 amino
acid polyprotein (GP0), which is post-translationally cleaved
by furin into two disulfide-linked subunits; a surface sub-
unit, GP1; and a membrane-spanning subunit, GP2. GP1
contains the receptor-binding domain (RBD) for host cell
attachment and a mucin-like domain to protect the RBD
from humoral and cell-mediated immunity. The RBD re-
sponsible for receptor binding, viral entry, and cellular trop-
ism is covered by a heavily glycosylated “glycan cap”. The
transmembrane GP2 contains a helical heptad-repeat re-
gion, transmembrane anchor, and a 4-residue cytoplasmic
tail. The GP2 drives fusion of the viral membrane with the
endosomal membrane of the target cell This GP1-GP2
heterodimer then assembles as a trimer on the viral surface.
This homotrimeric GP1,2 complex forms the spike on the
envelope membrane of the mature viral particles. During
processing, GP1,2 are unstable, and an abundant amount of
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a soluble non-virion form of GP1 and a scanty amount of
GP1,2 are released into the circulation [9-12]. The virus-
associated GP1,2 and not the other soluble glycoproteins
released during the virus infection are responsible for pri-
mary target cell activation [13]. The highly glycosylated
mucin-like region of GP1 is cytotoxic to the host cells [14].
The shedding of souble GP1,2-like protein due to cleavage
of EBOV glycoprotein on the surface of EBOV-infected
cells by tumor necrosis factor-alpha converting enzyme
(TACE) can activate non-infected dendritic cells and mac-
rophages to induce cytokine dysregulation and endothelial
cell dysfunction [15]. The GP2 of the EBOV is able to
counter the interferon (IFN)-inducible antiviral protein
tetherin which restricts the VP40-dependent budding of the
progeny viral particles from infected cells [16-18]. The sGP
is produced from non-edited mRNA species through furin
cleavage from a precursor pre-sGP. The sGP shares the
N-terminal 295 amino acids with GP1, but differs in the
carboxyl terminus by 69 amino acids. The sGP is released
into the circulation in the form of homodimers in anti-
parallel orientation [19] to evade an antibody-associated
innate immune response [20,21]. The sGP has an anti-
inflammatory function and impairs the transmigration and
activation of neutrophils [22,23]. While the GP1,2 in its
particle-associated form mediates endothelial cell activation
and a decrease in endothelial cell barrier function, sGP pro-
tects the endothelial cell against cytokine-induced barrier
dysfunction. The sGP constitutes at greater than 80% of the
total GP synthesized during infection. Hence, the hyperse-
cretion of the sGP may protect the EBOV against host
humoral immune defense and the host endothelial cell
against cytokine-induced cytotoxicity during the early phase
of the EBOV infection [15,24,25]. A-peptide released in
EBOV-infected cells joins cathepsins and integrins to
inhibit further entry of the EBOV in a dose-dependent
manner to prevent superinfection of EBOV-infected cells.
A-peptide inhibits entry of both marburgviruses and the
EBOV, indicating that they might interfere with a common
pathway used by filoviruses to gain entry into target cells
[26]. The ssGP of a yet undefined function is produced
through transcriptional editing and secreted in the
form of a disulfide-linked homodimer that is exclu-
sively N-glycosylated. While ssGP appears to share similar
structural properties with sGP, it does not appear to have
the same anti-inflammatory function as sGP [22,23,27].

The life cycle of the Ebola virus

The EBOV, being a RNA virus with limited coding cap-
acity, has utilized the host’s unique metabolic pathway
for its viral entry, replication, and egress. The entry of
the EBOV into cells is initiated by interaction of the viral
GP1 with host cell surface T-cell immunoglobulin and
mucin domain 1 (TIM-1) receptors. Upon receptor
binding, the EBOV is internalized into endosomes
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primarily via macropinocytosis [28-30]. Within the acid-
ified endosome compartment of the host cell, the heavily
glycosylated GP1 is cleaved to a smaller 19-kDa fusogenic
form by the low pH-dependent cellular proteases Cathepsin
L (CatL) and B (CatB), exposing residues in the receptor
binding site. This allows the binding of GP1 to cholesterol
transporter Niemann-Pick C1 (NPC1), a step in the late
endosome phase essential for virus-host membrane fusion
and viral entry [31-34]. Cells where the NPC1 function has
been biochemically disrupted or cells lacking NPC1 showed
resistance to the EBOV infection. Cells from subjects with
NPC1 disease were resistant to the EBOV because of de-
fects in the NPC1 protein [35-38]. After complete fusion of
the viral and host endosomal membranes via conform-
ational change in GP2, viral RNA and its associated pro-
teins are released into the host cell cytoplasm [39]. Once
inside the cytoplasm of the host cell, the EBOV suppresses
the innate immune response via VP35 and VP24 proteins
[40], and hijacks transcription and translation for robust
genome replication and the production of new virions. The
ribonucleoprotein (RNP) complex that mediates transcrip-
tion and replication of the EBOV genome comprises NP,
VP35, VP30, and L protein [41-44]. VP30 is essential in the
initiation of the EBOV transcription, but is not required for
viral replication. However, dynamic phosphorylation of
VP30 is an important mechanism to regulate the balance
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between the transcription and replication processes in the
EBOV replication cycle [45-47]. This unique property of
VP30 allows the development of a genetically stable VP30
deleted EBOV vaccine with protective efficacy in the mice
and guinea pig models [48]. The matrix proteins VP40 and
VP24 associated with the viral lipid coat are important for
virus structure and stability. Both matrix proteins VP24 and
VP40 contribute to the regulation of viral genome replica-
tion and transcription [49] and the budding of the virus
[50-52], an important step prior to viral egress [53,54]. This
distinct replication cycle of the EBOV serves as an attractive
target for the development of therapeutic agents against the
EBOV (see Figure 1 and Table 1).

Pathogenesis of the Ebola virus infection

Human EBOV hemorrhagic fever, characterized by uncon-
trolled viral replication together with immune and vascu-
lar dysregulation, has a case fatality rate of up to 90% [7].
Type I alpha/beta interferons (IFN-a/f), encoded by a
single IFN-f and 13 homologous IFN-a genes in humans,
represent an essential element of host defense against
virus infections, including the EBOV [55]. The human
EBOV infection is associated with robust IFN-a produc-
tion—with plasma concentrations of IFN-«a that greatly
(60- to 100-fold) exceed those observed in other viral
infections—but limited IFN-B production [56]. The
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Figure 1 Schematic diagram showing the replication cycle of Ebola virus (EBOV): Upon receptor binding of EBOV GP; with host TIM-1
receptor, EBOV is internalized into endosome via macropinocytosis. Within the acidified endosome compartment of the host cell, under the
action of the low pH-dependent cellular proteases cathepsins, the receptor binding site of GP; to cholesterol transporter Niemann-Pick C1 (NPC1)
is exposed. This results in conformational change in GP, , leading to complete fusion of the viral and host endosomal membranes in the late
endosome and the release of viral RNA and its associated proteins into the host cell cytoplasm. EBOV then hijacks transcription and translation for
robust genome replication and viral protein production under the action of ribonucleoprotein polymerase complex (RNP polymerase). The

accumulation of GP; , in the endoplasmic reticulum leads to endoplasmic reticulum overload response (ER-overload) which, in turn, induces
cytokine dysregulation via the activation of nuclear factor kappa B (NFkB) through the production of reactive oxygen species (ROS). New virions are
released through ATP-dependent budding and egress from host cell membrane. Currently available therapeutic agents that target the different steps
of the EBOV life cycle are described in Table 1.
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Table 1 Available therapeutic agents that target the
different steps of the EBOV life cycle as shown in the
diagram

Medication Mechanism of action

Convalescent blood serum  Contain neutralizing antibodies to provide

passive immunity.

Na*/K* exchanger Inhibit virus uptake by macropinocytosis.

- Amiloride

Leads to alkalinization of endosomes and
prevent the acid pH-dependent cleavage
of Ebola virus GP; , by endosomal proteases
cathepsin B and L.

Chloroquine'

Cationic amphiphiles Induce a Niemann-Pick C-like phenotype

and block the entry of EBOV through late

Amiodarone'
endosomes.

Dronedarone’
Verapamil®
Clomiphene
Toremifene'

Induce interferon-inducible transmembrane
proteins (IFITMP) production to restrict
entry of EBOV.

Interferon- beta (IFN-B)

Favipiravir Suppress viral RNA polymerase.

Na+/K+/ATPase pump Inhibit Na*/K*-ATPase that are important

inhibitors in the budding and egress of encapsulated
. EBOV.

Ouabain

Digoxin

Digitoxin

Anti-oxidants Suppress ROS-dependent NFkB activation
and cytokine dysregulation induced by

High dose N-acetylcysteine GP, »-induced ER-overload.

infusion

'Chloroquine, Amiodarone, Dronedarone and Toremifene administration is
associated with an increased risk of QT prolongation and Torsades de pointes.
2Verapamil should be avoided in patient with hypotension.

EBOV, protected from the host interferon response by
its encoded VP35 and VP24 proteins [40,57-59], pro-
duced a heavy viral load [60-62], cytopathic damages
[14,63,64], and cytokine dysregulation in humans [65-68].
The efficient productive replication of the EBOV inside
monocyte and macrophages leads to a massive release
of proinflammatory cytokines/chemokines and reactive
oxygen species (ROS) [13,15,65,66,69-71], which in turn
leads to diffuse endothelial cell dysfunction [72-76], dis-
seminated intravascular coagulation [77-79], and vaso-
motor collapse [80-82]. The infection of the antigen
presenting dendritic cells [83-86] and profound bystander
apoptosis of lymphocytes [63,87-89] impairs the develop-
ment of adaptive immunity [90,91] and EBOV-specific
CD8+ T [92-94], as well as CD4+ T cells [95] that are
important for the clearance of, and protection from, the
EBOV infection. Infected monocyte-derived dendritic cells
were impaired in the secretion of pro-inflammatory
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cytokines, the up-regulation of co-stimulatory mole-
cules, and the stimulation of T cells [96]. Numbers of
CD4+ and CD8+ T cells are substantially reduced in
fatal human and nonhuman primate (NHP) infections
before death [63,88,97].

Immune evasion by the glycoproteins of the Ebola virus:
implications on passive immunization and vaccine
development

The EBOV is able to counteract both humoral and cell-
mediated immunity through its GP1,2 and sGP [11,98].
The overexpression of mature GP1,2 on the plasma
membrane results in the masking of antigenic epitopes
on GP1,2 itself and the shielding of MHC-I and integrin
B, leading to evasion of antiviral immunity. Steric shield-
ing of surface epitopes by the heavily glycosylated GP
impairs the recognition and killing of EBOV-infected
cells by the natural killer and cytotoxic CD8+ T cell dur-
ing an acute viral infection. It may also contribute to the
persistent infection in the natural reservoir host to per-
petuate the spread of the EBOV [99-101]. The sGP can
evade host antibody-mediated response through “anti-
genic subversion” by eliciting non-neutralizing anti-
bodies that cross-react with GP1,2. Thus, the massive
secretion of sGP by the EBOV may prevent effective
neutralization of the virus during an EBOV infection
and reduce the effectiveness of vaccines that rely upon
neutralizing antibody responses against GP1,2 [20,21].
Some of the antibodies against GP1 may lead to enhance-
ment of infectivity of the EBOV via interaction with com-
plement component Clq, a phenomenon known as the
antibody-dependent enhancement. The EBOV initiates in-
fection by binding its GP1 to its specific human receptor
sites on the surface of human cells. The interaction of
Clq enhances binding between the virus-antibody com-
plex and the Clq ligands on the cell surface, promoting
interaction between the EBOV and its receptor. These
infectivity-enhancing antibodies were virus species specific
and were primarily correlated with immunoglobulin
IgG2a and IgM levels, but not with IgG1 levels [102,103].
The presence of infectivity-enhancing antibodies against
GP1,2 in the EBOV infection raises concerns about the
effectiveness of GP-based EBOV vaccines, and the use
of passive prophylaxis or treatment with GP-based anti-
bodies [104,105].

Antibodies against GP1 of the EBOV can be neutraliz-
ing, enhancing, or non-neutralizing and non-enhancing.
Neutralizing antibodies are produced in infection by the
EBOV at a relatively low frequency [106]. Some anti-
EBOV antibodies are known to be neutralizing in vitro but
not protective in vivo, whereas other antibodies are known
to be protective in animal models in vivo, but not neutral-
izing in vitro [107]. Investigations of anti-GP antibodies
against the EBOV showed that non-neutralizing antibodies
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recognized GP epitopes in the sGP or non-essential
mucin-like domain of GP1, while neutralizing antibodies
were specific to RBD in GP1 or conformation-dependent
epitopes at the base of the GP1,2 spike where GP1 meets
GP2. Two neutralizing antibodies (KZ52 and JP3K11)
against EBOV—that recognize conformation-dependent
epitopes comprising residues in GP1 and GP2—were iden-
tified to have quite distinct mechanisms of neutralization.
KZ52 is a human recombinant IgG1 neutralizing antibody
derived from a human survivor of a natural EBOV infec-
tion during the 1995 outbreak in Kikwit, Democratic
Republic of Congo. KZ52 has impaired recognition for the
sGP and binding was dependent on the presence of GP2
residues which are not present in the sGP. KZ52 is able to
inhibit cathepsin cleavage of GP1,2. JP3K11, a monkey
derived neutralizing monoclonal antibody against EBOV,
recognized the cleaved, fusion-active form of GP [108].
16 F6 is a mice derived monoclonal IgG1 antibody that
neutralizes Sudan EBOV by preventing the conformational
changes in GP1,2 required for membrane fusion. Both
16 F6 and KZ52 recognize GP1-GP2-bridging epitopes at
the base of the GP1,2 trimer, indicating that this overlap-
ping epitope may be one of the key sites for neutralization
of the EBOV, and is thus a target for immunotherapy and a
key goal of vaccine design [109]. Antibody subclass may be
another important factor in protection against the EBOV.
IgG2 isotype may offer more effective protection against
EBOV [110,111]. Although fully protecting guinea pigs
from infection, KZ52 fails to slow viral replication and
protect NHPs from the EBOV infection [112]. In contrast,
rVSV-EBOGP [113-116] and rChAd-EBOGP [117-120]-
based vaccination have demonstrated both prophylactic
and post-exposure protection in NHPs [121]. This was pre-
viously attributed to the protective action of EBOV-specific
CD4+ and CD8+ T-cell response induced by these vaccines
in limiting infection and the inability of KZ52 to com-
pletely block all entries of the EBOV into cells and its
subsequent explosive replication [112]. rChAd-EBOGP-
based vaccination is able to generate potent humoral and
cell-mediated responses. Significant antibody titers are de-
tectable at 48 weeks post vaccination [122,123]. CD8+ cell-
mediated immunity has been shown to play a critical role
in protection against the EBOV infection in NHPs in
rChAd-EBOGP-based vaccination [124]. On the other
hand, humoral rather than the cell-mediated response con-
tributes to protection against the EBOV infection in NHPs
in rVSV-EBOGP-based vaccination [125,126].

Candidate vaccines expressing the EBOV GP or NP pro-
tect rodents and NHPs from the lethal EBOV infection
[127-129]. Humoral and cell-mediated immune responses
are working together to provide protection against the
lethal EBOV infection. Either response alone may be able
to limit virus replication but both arms of the immune
response are required to clear the infection [97,130]. VP
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proteins (VP24, VP30, VP35, and VP40) are poor inducers
of cell-mediated immunity and are inaccessible to the
protective effect of VP-induced neutralizing antibodies
because they are not found on the surface of virions or
infected cells [131]. However, the genetic sites of these
internal proteins are susceptible to siRNA and PMO
interference. TKM-Ebola (a siRNA targeting L-polymerase,
VP24, and VP35) can be administered intravenously or
subcutaneously in a lyophilized lipid nanoparticle formula-
tion. TKM-Ebola offers post-exposure protection against
the EBOV infection in NHPs. The FDA has approved an
“expanded access” program for the use of TKM-Ebola in
patients with confirmed or suspected infections [132,133].
Anti-sense phosphorodiamidate morpholino oligomers
AVI-6002 effectively reduce viral load, diminish virally-
induced pathology, and improve survival of NHPs with
the EBOV infection by targeting VP24 and VP35 mRNA.
Through judicious placement of positive charges on the
drug backbone, the drug is able to bind to a negative
charge on the virus even if binding at one or more drug-
virus base pairs are lost through mutation. This integra-
tion of dual targeting and charge complementation signifi-
cantly lowers the likelihood of drug resistance through
viral mutagenesis [134,135].

Available drugs that target the different steps of the
Ebola virus life cycle

Currently available therapeutic agents that are effective in
targeting the EBOV infection in cell or animal studies may
include convalescent plasma, favipiravir, chloroquine, ami-
odarone, dronedarone, verapamil, clomiphene, toremifene,
IFN-B, Na"/K" exchangers, Na*/K"-ATPase pump inhibi-
tors, and antioxidants. Except for convalescent plasma
and favipiravir, most of the therapeutic agents under re-
view are acting against the non-mutable targets of the host
cells which participate in the replication cycle of the
EBOV. They may also have a complementary role to con-
ventional therapy in the management of the current
EBOV outbreak in West African countries (see Table 1).

(1) Convalescent blood serum

The WHO issued a consensus statement that the use of
whole blood therapies and convalescent blood serum
needs to be considered as a matter of priority in the recent
EBOV outbreak in West African countries [2]. The devel-
opment of neutralizing antibodies and T-cell responses are
important for recovery from the EBOV infection [97,136].
Patients who are able to mount an immune response to
the EBOV will begin to recover in seven to ten days and
start a period of prolonged convalescence [137]. In survi-
vors, early and increasing levels of IgG, directed mainly
against the NP and the VP40, were followed by the clear-
ance of circulating viral antigen and activation of cytotoxic
T cells. In contrast, fatal infection was characterized by
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impaired humoral responses, with absent specific IgG and
barely detectable IgM [63]. Convalescent blood has been
shown to improve survival of EBOV-infected patients
during the outbreak in Kikwit in 1995 [138]. Immunity
against EBOV GP is sufficient to protect individuals
against infection, and several vaccines based on EBOV GP
are under development including recombinant adenovirus,
parainfluenza virus, Venezuelan equine encephalitis virus,
vesicular stomatitis virus, and virus-like particles [139].
Neutralizing human monoclonal antibodies is able to pro-
tect mouse and guinea pigs from lethal EBOV. However,
the protection was achieved only by treatment shortly be-
fore or after viral infection [140-142]. The EBOV can rap-
idly mutate to produce antibody-escape mutants. Hence,
antibody therapy may require hyperimmune polyclonal
serum or a panel of monoclonal antibodies of different
epitope specificities to be successful [143,144]. These stud-
ies have laid the foundation for subsequent clinical re-
search on the development of monoclonal antibodies
[145-148] and utilization of a monoclonal antibody cock-
tail such as MB-003 [149], ZMAD [150], and ZMapp [151]
in the treatment of the EBOV infection in NHPs. It is
interesting to note that all three monoclonal antibody
cocktails include one antibody that binds to or close to the
glycan cap and that two of the three monoclonal antibody
cocktails include at least one antibody that binds the GP1/
GP2 interface, indicating that these two regions may be es-
pecially important in protection against EBOV [148]. The
treatment window of monoclonal antibody therapy can be
extended by the co-administration of adenovirus-vectored
interferon therapy. In a guinea pig model, monoclonal
antibodies combined with adenovirus-vectored interferon
given three days after infection resulted in 100% survival, a
significant improvement over either treatment alone [152].
A subsequent study showed that such a combination ther-
apy is capable of saving 100% of EBOV-infected NHPs
when initiated after the presence of detectable viremia
along with symptoms [153].

(2) Favipiravir (T-705; 6-fluoro-3-hydroxy-2-
pyrazinecarboxamide)

Favipiravir is a broad-spectrum inhibitor of viral RNA
polymerase that is able to inhibit the replication of many
RNA viruses. It is registered in Japan for the treatment of
influenza virus infection [154,155]. Favipiravir is able to
suppress the replication of the EBOV in cell culture. Favi-
piravir, initiated at day 6 after EBOV infection, induced
rapid virus clearance, reduced the biochemical parameters
of disease severity, and prevented a lethal outcome in
100% of mice lacking the Type I interferon receptor [156].
Oral favipiravir taken twice daily for 14 days is able to give
100% protection against an aerosol EBOV infection in an
immune-deficient mice model [157,158]. The survival
benefit was suboptimal in NHPs. Only one of the six
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animals tested survived. Studies using dosages that are
two to five times higher and have duration longer than
shown in influenza studies are being conducted for the hu-
man EBOV infection [5]. BCX4430, a synthetic adenosine
analogue with a viral RNA polymerase inhibitor function, is
active against the EBOV and Marburg virus in rodent and
cell culture. BCX4430 completely protects NHPs from the
Marburg virus infection when administered as late as
48 hours after infection [159,160].

(3) Chloroquine

The antimalarial drug chloroquine is able to increase endo-
somal pH. An acidic endosomal environment is important
for the pH-dependent activation of cysteine proteases CatB
and CatL, the proteases responsible for the cleavage of
EBOV GP1,2 essential for endosomal virus-host membrane
fusion [35,39,161-163]. However, proteolytic processing of
the EBOV glycoprotein has been demonstrated to be not
critical for EBOV replication in cell culture [164] or NHPs
[165]. A recent study using a CatB and CatL deficient
mouse model for the study of the EBOV infection demon-
strates that CatB and CatL activity is not absolutely
required for EBOV replication. The EBOV glycoprotein
cleavage seems to be mediated through a broader spectrum
of proteases making therapeutic approaches targeting lim-
ited proteases unlikely to be beneficial to combat EBOV
infections [166]. A broad-spectrum small molecule that
targets the CatL cleavage of the EBOV and inhibits the
entry of a wide variety of viruses has recently been identi-
fied. It has been examined for the potential to develop into
a potent broad-spectrum antiviral medication [167].

(4) Cationic amphiphiles

Multiple cationic amphiphiles including amiodarone,
dronedarone, verapamil, clomiphene, and toremifene
have been identified as potent inhibitors of the entry of
the EBOV in an NPCl-dependent fashion [38,168].
Amiodarone used for the treatment of atrial fibrillation
and ventricular cardiac arrhythmia can induce lipidosis
with features similar to Niemann-Pick C disease [169].
Amiodarone and dronedarone, having basic pKa and
high water solubility at acidic pH, accumulates within
late endosomal compartments, blocking fluid-phase
endocytosis, proteolysis and lipid trafficking, and indu-
cing a Niemann-Pick C-like phenotype. In contrast to
the Niemann-Pick type-C disease, they are not allevi-
ated by cholesterol removal [170,171].

Amiodarone, at concentrations that are routinely reach-
ed in human serum during anti-arrhythmic therapy
(1.5-2.5 pg/ml), is a potent inhibitor of filovirus cell
entry through late endosomes (IC50 025 pg/ml for
EBOV), when induced as a Niemann-Pick C-like pheno-
type. Significant inhibition is observed in most endothelial
and epithelial cells (e.g. macrophage, monocyte, vascular
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endothelial cell), except for primary hepatocyte and fibro-
blast. The inhibitory effect of amiodarone on the entry of
the EBOV was dose-dependent and reversible upon re-
moval of the drug. Prolonged exposure to amiodarone
will not lead to a compensatory change in the host cell.
A similar inhibitory property is observed with the
amiodarone-related agent dronedarone and the L-type
calcium channel blocker verapamil [38,168,172,173].

Both clomiphene and toremifene have anti-EBOV activ-
ity in both the Vero E6 (interferon-deficient African green
monkey kidney epithelial cells) and HepG2 (human hepa-
tocellular carcinoma) cell lines. The anti-EBOV activity of
clomiphene and toremifene is dependent not on its estro-
gen receptor antagonistic action but upon the ability of
both drugs to induce a Niemann-Pick C-like phenotype to
inhibit viral entry at late endosome. Clomiphene and tore-
mifene do not disrupt the interaction between primed
GP1 and NPC1, but mediate the entry block indirectly
through NPC1 by targeting other endosomal/lysosomal
proteins involved in the cholesterol uptake pathway whose
functions may be regulated by NPC1. Clomiphene and
toremifene at 60 mg/kg every other day have been shown
to result in a 90% and 50% survival rate, respectively, in
EBOV-infected mice compared with 100% mortality in the
control group in an in vivo murine EBOV infection model.
They are effective in both male and female mice [38,174].
However, the therapeutic dose against EBOV cannot be
achieved with the oral clomiphene dose used for inducing
ovulation in humans [175-177]. The therapeutic dose
against EBOV with tolerable side effects can be achieved
with toremifene at an oral dose used in the human trial
for the treatment of advanced carcinoma of the breast
[178-181]. Toremifene is well absorbed and >99.5% bound
to plasma protein. Toremifene undergoes extensive liver
metabolism and enterohepatic recirculation. The majority
of the toremifene dose is excreted as metabolites in feces.
The long terminal half-life of oral toremifene may be due
to both plasma protein binding and enterohepatic recircu-
lation [182,183].

(5) Interferon-beta

Interferon-induced transmembrane proteins (IFITMs)
are expressed basally in the absence of IFN induction in
both primary tissues and cell lines [184]. An IFITM is
able to inhibit the entry of viruses to the host cell cyto-
plasm; permit endocytosis, but prevent subsequent viral
fusion; and release viral contents into the cytosol. The
human IFITM locus is located on chromosome 11 and
composed of four functional genes: IFITM1, IFITM2,
IFITM3, and IFITM5. IFITM4p is a pseudogene. Viruses
that are restricted by IFITM proteins tend to fuse with
host cell membranes in a late endosome or lysosome
that precedes the induction of Type I IFN in infected
cells. Viral escape from restriction by IFITM proteins
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could be more challenging than for antagonizing inhibi-
tory factors that function at later stages of the virus life
cycle because the opportunity for de novo synthesis of
viral inhibitors is not available. All four human IFITM
proteins are induced robustly by both Type I and Type
II IFNs. IFITML1 is active against multiple viruses, in-
cluding the EBOV and hepatitis C viruses [185-187]. IFN-
B is able to induce interferon-inducible transmembrane
protein production to restrict entry of the EBOV [188].
Early post-exposure treatment with IEN-f significantly in-
creased survival time of rhesus macaques infected with a le-
thal dose of the EBOV, although IEN-{ alone failed to alter
the mortality rate. IEN-p treatment was associated with a
trend towards lower plasma and tissue viral burden and
pro-inflammatory cytokines production [56].

(6) Na*/K* exchangers (amiloride and its derivatives)
Amiloride and its derivatives are used as potassium-
sparing diuretics to treat hypertension and congestive
heart failure. Apart from inhibiting epithelial Na" chan-
nel and cellular Na"/K" exchangers, these drugs could
also affect the function of other less well-defined ion-
exchangers (Na*/Ca** and Na*/Mg”"), and disturb the
equilibrium of other ions, such as Mn** [189-192]. The
entry of the EBOV into host cells is the first step of
infection and a crucial determinant of pathogenicity.
Upon receptor binding between GP1 and host TIM-1
receptors, the EBOV is internalized into endosomes pri-
marily via the macropinocytic pathway. Amiloride is able
to inhibit the uptake of many viruses that utilize the
macropinocytic pathway for host cell entry [193-196].
Amiloride at non-cytotoxic dosages leads to potent dose-
dependent inhibition of the entry and infection of the
EBOV [197,198]. Amiloride can lead to dose-dependent
inhibition of RNA synthesis. This may be due to a direct
blockage of a nucleotide entry tunnel or catalytic site, or
due to its effect on the equilibrium of Mg** and Mn®* that
are essential co-factors for polymerase activity and nucleo-
tide insertion [199,200]. These novel antiviral mechanisms
of amiloride may uncover new targets for drug discovery
against the EBOV.

(7) Na*/K*-ATPase pump inhibitors (ouabain, digoxin, and
digitoxin)

Adenosine triphosphate (ATP) is essential in multiple steps
in the replication cycle of many viruses. Na*/K*-ATPase
pump is located in the plasma membrane of all animal cells
to maintain the cell membrane potential. Budding of envel-
oped viruses is a complex phenomenon that requires con-
certed actions of many viral and host components. ATP
may affect multiple steps in the budding process [201].
ATP is required for the assembly and maturation of a
number of enveloped viruses such as the influenza virus,
vaccinia virus, retrovirus, and herpes simplex virus. The
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Na®/K"-ATPase pump inhibitors, ouabain, Lanatoside C,
strophanthidin, and digoxin are able to inhibit the rep-
lication of the influenza virus, Newcastle disease virus,
and vesicular stomatitis virus through an interferon-
independent mechanism [202]. Digoxin and Lanatoside
C have been shown to inhibit vaccinia virus replication
at non-cytotoxic doses [203]. Ouabain has shown antiviral
activity against the influenza virus [204], herpes simplex
virus [205], Sendai virus [206], murine leukemic virus
[207], cytomegalovirus porcine reproductive and respira-
tory syndrome virus [208], and human cytomegalovirus
virus [209]. One common feature shared by these viruses
is that they all possess a lipid envelope. The EBOV is an
enveloped filamentous RNA virus. The secondary matrix
protein VP24—apart from its role in the evasion of host
immune response, nucleocapsid formation, and regulation
of replication—has an important role in viral budding and
egress. Na'/K'-ATPase ATP1Al is detected to have a
close interaction with VP24 of EBOV during replication.
Ouabain, at a non-cytotoxic concentration of 20nM, is able
to suppress the replication of the EBOV in human MRC-5
cells [210,211]. Among the three cardiac glycosides that
may include digoxin, digitoxin, and ouabain, only digoxin is
commonly used in clinical practice. Ouabain, because of
its poor oral availability, is used primarily as a research
tool. Further research should be conducted to investigate
whether digoxin and other Na'/K'-ATPase inhibitors
might play a role in the management of the EBOV or
other enveloped virus infections.

(8) Antioxidants

The virus-associated glycoprotein GP1,2 is responsible for
the activation of human macrophages [13]. The highly gly-
cosylated mucin-like region of the GP1 subunit of GP1,2
is cytotoxic to the host cells [14]. The mucin-like region in
GP1 leads to an accumulation of GP1,2 at the endoplasmic
reticulum, induces endoplasmic reticulum stress [212], and
activates nuclear factor kappa B (NF-«xB) [213]. Mutations
of the EBOV that lead to an enhanced accumulation of
GP1,2 in the endoplasmic reticullum were significantly
more cytotoxic than wild-type virus [214]. In human cells,
the accumulation of protein in the endoplasmic reticulum
will lead to endoplasmic reticulum overload response (ER-
overload) which activates NF-kB through the production of
ROS [215]. As a major transcription factor for antiviral and
immune stimulatory activities, NF-kB is thought to play an
important role in the induction of pro-inflammatory mole-
cules, such as interleukin-13 (IL-1f), and tumor necrosis
factor a (TNF-a), upon cellular responses against a virus
infection [216]. The cytokine dysregulation of the EBOV
involves massive ROS, NF-kB, TNF-q, and IL-1p activation
[65,66]. The effectiveness of antioxidant therapy for the
EBOV infection indicates the importance of ROS in the
pathogenesis of the EBOV [217]. The activation of NF-kB
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by ER-overload is ROS-dependent [218]. NF-kB-induced
cytokine dysregulation of novel HIN1 pneumonia has been
shown to be suppressible by high-dose N-acetylcysteine
(NAC) antioxidant therapy at 100 mg/kg continuous infu-
sion daily [219]. Given the poor oral availability of NAC in
the range of 6% to 10% in humans [220], a therapeutic dose
of NAC equivalent to the intravenous route can hardly be
delivered by oral preparation. NAC is a category B drug for
pregnancy and is affordable, with a wide therapeutic win-
dow. NAC has an established safety profile even in high
doses and prolonged use in humans [221-223].

Cytokine dysregulation is a common feature in the
EBOV infection and is associated with an enhanced mor-
tality [65-68]. Antiviral medications directed against the
mutable viral determinants of the EBOV cannot directly
prevent cytokine dysregulation. The early endothelial vas-
cular damage characteristic of the EBOV infection is not a
direct effect of virus-induced cytolysis of endothelial cells,
but is due to cytokine dysregulation resulting from massive
release of proinflammatory cytokines/chemokines and ROS
by infected macrophage and monocytes [70-72]. Lympho-
cytes are resistant to the EBOV infection. Cytokine dysregu-
lation may also contribute to the diffuse bystander apoptosis
of lymphocytes [63,87-89]. With the safety profile of NAC, if
the therapeutic efficacy of a high-dose NAC antioxidant
therapy to manage EBOV-induced cytokine dysregulation is
confirmed, it may revamp the future management of the
EBOV infection.

Proposed prophylactic and therapeutic regimen against
the Ebola virus infection

There is a desperate need for a viable treatment regimen
in Africa to engender hope and encourage people with
symptoms and their close contacts to seek medical treat-
ment, so as to limit the spread of the disease. This also
helps to recruit and maintain adequate medical staff who
are at high risk of contracting the disease. A proposed
regimen against the human EBOV infection based on
available medications and information from in vivo animal
testing and in vitro cell culture is attached (see Tables 2
and 3). This regimen contains a cocktail of currently avail-
able medications that can target the different steps in the
replication cycle of the EBOV aiming to suppress viral
proliferation. It has been shown that viral load is major
contribution to survival in both human and animal studies
[60-62,136]. Through viral load suppression, we may be
able to prolong a patient’s survival in order to allow the
development of natural body immune defense against the
EBOV.

The EBOV has undergone a rapid mutation during its
spread through humans [224-226]. The EBOV is an RNA
virus the replication of which is highly error prone with
nearly one viral mutation occurring during each cycle of
replication. This extremely high mutation rate leads to
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Table 2 Proposed therapeutic regimen for the
prophylaxes and treatment of human EBOV infection
based on available therapeutic medications and
information from in vivo animal testing and in vitro cell
culture

Therapeutic regimen based on available medications for ebola
virus prophylaxes and treatment

Ebola virus Available medications

Prophylaxis’ Amiodarone (macrophage, monocyte &

endothelial cell)

Post Needle Stick Injury IFN-B 4+ amiodarone (macrophage, monocyte &

Prophylaxis endothelial cell) + toremifene (liver)>> +
favipiravir' + convalescent blood serum
Treatment Amiodarone (macrophage, monocyte &

endothelial cell) + toremifene (liver)> +

favipiravir’ + high dose N-acetylcysteine infusion”
+ convalescent blood serum + supportive care

1 ml of blood may contain 10 ® to 10 '° virions in terminally ill patient.
Prophylactic amiodarone therapy may protect macrophage, monocyte and
endothelial cells immediately from EBOV during needle stick injury and
accidental exposure and allow time for the consideration of IFN-f, toremifene,
favipiravir and convalescent blood serum therapy.

2Amiodarone is unable to protect hepatocyte from EBOV infection.

3Both amiodarone and toremifene can increase the risk of QT prolongation
and Torsades de pointes.

“The recommended dosage for treatment of human EBOV infection may be 2
to 5 times higher than influenza studies. Please confirm the recommended
dose with the drug company.

N-acetylcysteine intravenous infusion at 100 mg/kg/day to control cytokine
dysregulation (e.g. add 5 g of intravenous preparation of N-acetylcysteine into
each liter of intravenous replacement fluid).

significant genetic and antigenic diversity that allows the
EBOV population to evolve resistance to antiviral medica-
tions and vaccines [227,228]. A combination therapy has
been used in the treatment of RNA virus infections, such
as the human immunodeficiency virus (HIV) [229,230]
and hepatitis C [231,232] to minimize the development of
drug resistance. Given the broad cell tropism and high
replication rate of the EBOV due to the potent suppres-
sion of both innate and adaptive immune responses of the
host, patients with the EBOV infection have an extremely
high viral load. The selective pressure in the presence of
the high mutation rate and viral load during the human
EBOV infection make the evolution of the EBOV viral
strains resistant to a single drug inevitable. The currently
available medications in the proposed regimen—which is
a treatment regimen containing a cocktail of antiviral
medications targeting the different steps of the EBOV rep-
lication in order to achieve maximal suppression of viral
replication and to prevent the rapid development of resist-
ance to favipiravir, the only drug in the regimen that is di-
rected against a mutable target of the EBOV—has been
shown to reduce the replication of the EBOV. [233-235].
The current EBOV vaccine (rVSV-EBOGP and rChAd-
EBOGP) and therapeutic agents (ZMapp, TKM-Ebola,
PMO AVI-6002, and favipiravir) under development are
directed against the mutable targets of the EBOV, and
their effectiveness is limited by viral mutation. The EBOV,
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being a RNA virus with limited coding capacity, has uti-
lized the host’s unique metabolic pathway for its viral
entry, replication, and egress. Most of the therapeutic
agents in this current review are directed against non-
mutable targets of the host which is independent of viral
mutation. These medications are FDA-approved for the
treatment of other diseases. They are available and stockpile-
able for immediate use. They may also have a complemen-
tary role to those therapeutic agents under development
that are directed against the mutable targets of the EBOV.

The primary target of the EBOV is the mononuclear
phagocytic system. The spectrum of target cells increases
to include endothelial cells, fibroblasts, hepatocytes, and
many other cells during the advanced stage of the disease
[6,236,237]. The EBOV may produce a viral load of up to
10" virions per ml serum in terminally ill patients [80].
Oral amiodarone prophylaxis, by inducing a Niemann-
Pick C-like phenotype in the cells of the mononuclear
phagocytic system, may prevent viral entry into these cells
during needle stick injury. Through protection of the
mononuclear system by our prophylaxis and cocktail ther-
apy, we hope to offer a better chance of survival to these
patients by allowing them to develop a natural body
immune defense against the EBOV infection. The liver,
containing the largest number of fixed tissue macrophages
(Kupffer cells), as part of the reticuloendothelial immune
defense system of the body, is a major target for the EBOV
infection [238,239]. The EBOV replicates to high titer in
the liver [240]. Hepatic apoptosis may play a role in the
pathogenesis of the EBOV infection [88]. Toremifene is
added to the treatment regimen for hepatic protection
because amiodarone does not exert inhibitory action against
the EBOV in hepatocyte. However, both amiodarone and
toremifene can increase QTc and the risk of Torsades de
pointes. Therefore electrocardiogram should be carefully
monitored if both drugs are to be used. Amiodarone, favi-
piravir, and toremifene are available and stockpileable in
oral preparations. These properties are advantageous in
outbreak situations and contingency planning of a poten-
tial EBOV epidemic or pandemic. The avoidance of intra-
venous administration will prevent needle stick injury in
healthcare workers caring for the infected patients.

IEN-B may have potential as an adjunctive post-
exposure therapy for high-risk exposure, such as needle
stick injury, by inducing IFITM1 to limit entry of the
EBOV. Post-exposure IFN- treatment was associated
with a trend towards lower plasma and tissue viral bur-
den and pro-inflammatory cytokines production [56].
The reduction in viral load and cytokine dysregulation
coupled with optimal supportive therapy may improve
the chance of survival of the host to allow the develop-
ment of natural immunity to control the underlying
EBOV infection. IFITM1 is active against multiple vi-
ruses, including the EBOV [185,188] and hepatitis C
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Table 3 Prophylaxis regimen for healthcare worker after needle stick injury

Oral’

Not required

Regimen

Central venous line

Intravenous®

Required

Interferon-beta

Amiodarone 600 mg p.o. twice daily for 8 days (loading) then
maintenance 600 mg p.o. daily for further 3 weeks.

Toremifene 800 mg p.o. on Day 1 (loading) then 400 mg p.o. daily.

Favipiravir 1800 mg p.o. twice daily on Day 1 (loading doses)

then 800 mg p.o. twice daily.®

6 million international units (MIU) prefilled pen via
intramuscular injection (IMI) weekly for 3 weeks?

6 MIU intravenous infusion over 2 hour daily for up to
3 weeks® or 6 MIU prefilled pen IMI weekly for 3 weeks.

150 mg into 100 ml D5 over 10 minutes followed by 360
mg infusion over 6 hours then 540 mg infusion over

18 hours D1.* Amiodarone 720 mg infusion daily or 600 mg
p.o. twice daily for further 7 days followed by 600 mg p.o.
maintenance daily for further 3 weeks.

800 mg p.o. on Day 1 (loading) then 400 mg p.o. daily.’

1800 mg p.o. twice daily on Day 1 (loading doses) then
800 mg p.o. twice daily.

'Oral regimen are for those workers who are already on amiodarone prophylaxis with a loading dose of amiodarone 600 mg p.o. twice daily for 8 days followed
by maintenance amiodarone 600 mg p.o. daily. Electrocardiogram and thyroid function should be monitored.

2Monitor for side effect of thrombocytopenia and proteinuria.

3Intravenous dosage of IFN-B that are used for human hepatitis C virus infection to induce IFITM1 to limit viral entry.

“Intravenous regimen is for those workers who have not been on amiodarone prophylaxis and agreed for the insertion of a central venous line for drug
administration. Intravenous amiodarone should be administered via central venous line to avoid phlebitis. The dosage for treatment of frequently recurring
ventricular fibrillation and hemodynamically unstable ventricular tachycardia is recommended because it can achieve therapeutic drug level immediately after the

first dose of amiodarone.
*http://www.pulmcrit.org/2014/08/could-estrogen-receptor-antagonists.html.

®Dosage for the treatment of human influenza virus infection in human Phase 3 trial of Favipiravir (FAVOR Study). http://www.clinicaltrials.gov/show/NCT02008344.
The recommended dosage for treatment of human EBOV infection may be 2 to 5 times higher than influenza studies. Please confirm the recommended dose

with the drug company.

[186,187,241,242]. Interferon induced IFITM1 plays an
important role in the treatment of human HCV infection
by inhibiting entry of HCV into the host cell [243]. Six
million international units (MIU) of IFN-B intravenous
administration is as effective as a three MIU twice-daily
regimen for treatment of the HCV infection [244], but has
lesser side effects that require discontinuation of the
medication [245,246]. As the aim of IFN-P therapy in our
regimen for post needle stick prophylaxis against the
EBOV infection is to induce IFITM1 to limit viral entry,
the dose of IFN-P for the post needle stick prophylaxis
[247,248] or induction therapy [249,250] for HCV infec-
tion in humans is chosen. Once infection is fully estab-
lished, IFN-PB are replaced by convalescent blood serum
and high-dose NAC infusion for providing passive
humoral immunity and for the control of ROS-dependent
NF-kB-induced cytokine dysregulation respectively.

Summary

The EBOV is classified as biosafety level 4 pathogen and
is classified by Centers for Disease Control and Preven-
tion as a category A agent of bioterrorism with no ap-
proved therapies and vaccines for its treatment but
carrying a high potential for large-scale dissemination.
Recent political, economic, military, and religious turbu-
lence around the world raises concerns that the EBOV
might be used as an agent of bioterrorism [251-253].
The recent EBOV epidemic is spiraling out of control in
West Africa. The containment measures that worked in
the past, such as isolating those who are infected and

tracing their contacts, have failed due to an exponential
rise in infected patients. Although the short-term (three-
and six-week) probability of international spread outside
the African region is small, the risk of the extension of
the outbreak to other African countries followed by
international dissemination on a longer time scale is not
negligible, indicating that this public health emergency
has the potential to grow to extraordinarily destructive
dimensions [254,255]. Although several promising thera-
peutic agents and vaccines against the EBOV are under-
going the Phase I human trial, the current epidemic
might be outpacing the speed at which drugs and vaccines
can be produced [5]. To combat such an unprecedented
global public-health crisis before these experimental
agents are available, alternative available interventions
capable of managing the enhanced viral replication and
cytokine dysregulation of the human EBOV infection
should be explored and stockpiled as contingency prepar-
ation for the worst-case scenario of an impending human
EBOV pandemic [256].

Like all viruses, the EBOV largely relies on host cell
factors and physiological processes for its entry, replica-
tion, and egress which, in turn, lead to cytopathic dam-
age, cytokine dysregulation, and death of the host. These
non-mutable key steps inside the host may be novel
targets for future therapeutic strategies against these
rapidly mutating viruses. If the efficacy of amiloride,
digoxin, amiodarone, and high-dose NAC antioxidant
therapy against the human EBOV infection is confirmed,
the availability and affordability of these stockpileable
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agents make them ideal medications in pandemic situ-
ation and in countries with limited resources. They may
have a complementary role to other antiviral medica-
tions to prevent the emergence of resistant strains. This
may also signify a major breakthrough in future manage-
ment of the EBOV infection.
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