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Abstract

Malaria is a major cause of morbidity and mortality in many African countries and parts of Asia and South America.
Novel approaches to combating the disease have emerged in recent years and several drug candidates are now
being tested clinically. However, it is long before these novel drugs can hit the market, especially due to a scarcity
of safety and efficacy data.
To reduce the malaria burden, the Medicines for Malaria Venture (MMV) was established in 1999 to develop novel
medicines through industry and academic partners’ collaboration. However, no reviews were focused following
various preclinical and clinical studies published since the MMV initiation (2000) to till date.
We identify promising approaches in the global portfolio of antimalarial medicines, and highlight challenges and
patient specific concerns of these novel molecules. We discuss different clinical studies focusing on the evaluation
of novel drugs against malaria in different human trials over the past five years.
The drugs KAE609 and DDD107498 are still being evaluated in Phase I trials and preclinical developmental studies.
Both the safety and efficacy of novel compounds such as KAF156 and DSM265 need to be assessed further,
especially for use in pregnant women. Synthetic non-artemisinin ozonides such as OZ277 raised concerns in terms
of its insufficient efficacy against high parasitic loads. Aminoquinoline-based scaffolds such as ferroquine are
promising but should be combined with good partner drugs for enhanced efficacy. AQ-13 induced electrocardiac
events, which led to prolonged QTc intervals. Tafenoquine, the only new anti-relapse scaffold for patients with a
glucose-6-phosphate dehydrogenase deficiency, has raised significant concerns due to its hemolytic activity. Other
compounds, including methylene blue (potential transmission blocker) and fosmidomycin (DXP reductoisomerase
inhibitor), are available but cannot be used in children.
At this stage, we are unable to identify a single magic bullet against malaria. Future studies should focus on
effective single-dose molecules that can act against all stages of malaria in order to prevent transmission. Newer
medicines have also raised concerns in terms of efficacy and safety. Overall, more evidence is needed to effectively
reduce the current malaria burden. Treatment strategies that target the blood stage with transmission-blocking
properties are needed to prevent future drug resistance.
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Multilingual abstract
Please see Additional file 1 for translations of the
abstract into the five offical working languages of the
United Nations.

Background
Malaria is an infectious disease caused by the protozoa of
the genus Plasmodium, transmitted through the bite of the
female Anopheles mosquito. It is a major public health
problem in many endemic countries including Sub-Saharan
Africa (SSA); in 2015, an estimated 438 000 malaria deaths
were reported globally [1]. Human pathogenic Plasmodium
species include Plasmodium falciparum, P. vivax, P. ovale,
P. malariae, and P. knowlesi. Sporozoites are injected into
the skin through a mosquito bite, invading hepatocytes and
causing liver infection. The merozoites released from the
liver rapidly infect the erythrocytes during the erythrocytic
stage. Multiple rounds of the erythrocytic stage produce
larger numbers of parasites that invade the blood, conse-
quently causing clinical illness. Erythrocytic parasites
develop into sexual gametocytes and are transmitted to
humans through a mosquito bite.
The Plasmodium-infected female Anopheles mosquito

is the deadliest known disease vector causing as many
deaths as deaths from HIV/AIDS and tuberculosis [2].
In 2008, the World Health Organization (WHO)
initiated the Global Malaria Action Plan (GMAP) to
reduce rates of malaria incidence and mortality by at
least ten-fold by 2030. Despite numerous advances over
the past decade, new drugs are urgently needed. To
reduce the malaria burden in developing countries, the
not-for-profit organization Medicines for Malaria
Venture (MMV) was established in 1999. Its main goal
is to initiate collaborations with industry and academic
partners in order to develop novel approaches to combat
malaria [3]. This has led to the design and discovery of
new medicines for human malaria cases. Between 2000
and 2015, malaria incidence rates decreased globally by
37 % and mortality rates decreased by 60 %. Most
malaria cases (89 %) and deaths (91 %) from malaria
globally were reported in SSA [4]. The emergence of
resistance to traditional therapies including chloroquine,
primaquine, quinine, and mefloquine has also revealed
novel antimalarial targets. In the past decades, a consor-
tium of researchers from academia and industry was
created to develop new remedies focusing on chemo-
types [5]. Consequently, the discovery of artemisinin-
based combination therapies (ACTs) by Chinese scien-
tists has tremendously benefitted hundreds of thousands
of patients. However, resistance to antimalarial drugs
continues to pose a major threat to malaria eradication
[6]. Furthermore, recent advances in the development of
species-specific malaria vaccines have emerged as the
most prominent approach to eradicating malaria.

24 malarial vaccines are currently being tested in 99
clinical sites in Africa and 30 in Southeast Asia [7]. The
most advanced recombinant protein-based malaria vaccine
is Mosquirix™ (RTS, S), a combination of 25 % fusion
protein RTS and 75 % wild-type hepatitis B surface antigen
(HBsAg). The vaccine is effective against P. falciparum
malaria and was developed by GlaxoSmithKline (GSK), the
PATH Malaria Vaccine Initiative, and other partners. In a
late-stage Phase III trial, Mosquirix™ showed poor efficacy
with only 27 % protection against severe malaria in infants
[8]. The European Medicines Agency approved the use of
Mosquirix™ in young African children in July 2015,
although final consent from the WHO is still needed. While
these vaccines may provide partial protection, their
widespread use in Africa may be affected by high costs, as
well as compliance and feasibility challenges.

Challenges for the eradication of malaria
Since 2000, malaria infection rates have been reduced by
over 50 %, but complete eradication is still a challenge
[9]. To completely wipe out malaria, multifaceted strat-
egies are essential. One approach is single exposure
radical cure and prophylaxis (SERCaP), proposed as a
global agenda in 2007 for identifying ideal drugs to treat
malaria [10]. International guidelines have recommended
the use of ACTs as a first-line treatment on a three-day
course schedule, as ACTs, particularly artesunate, can
rapidly reduce the parasitic load by at least 10 000-fold
within 48 h of the parasitic life cycle, resulting in >95 %
clearance of initial infection. However, subtherapeutic
doses and non-adherence are additional barriers promot-
ing the emergence of resistant malarial strains and
contributing to treatment failure. Medicines with longer
durations of drug action and higher minimum inhibitory
concentrations (MICs) in the plasma for at least one
week can suppress the parasitic load and offer post-
exposure and post-treatment protection. Chemoprotec-
tants are an emerging class of drugs. Sulfadoxine-
pyrimethamine is a chemoprotectant combination drug
that was widely used among patients until the emer-
gence of resistance last decade [11, 12]. Novel chemo-
protective agents acting against the schizont stage of the
malaria parasite are needed to prevent merozoite pro-
duction from blood cells.
In this study, we reviewed various preclinical and

clinical studies published during the period directly
following the establishment of the Medicines for Malaria
Venture (2000) and 2015.
We discuss different preclinical and clinical studies

focusing on the evaluation of novel drugs against malaria
in different human trials over the past five years regis-
tered in the clinicaltrials.gov database [13] (see Table 1).
We also address additional approaches to treating
malaria with a special focus on safety.
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Methods
To summarize the existing evidence related to the port-
folio of novel antimalarial drugs, we conducted a
systematic review using the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
Statement [14]. We searched publicly available sources
such as PubMed, Web of Science, clinicaltrials.gov, and
drug company websites. Original and unoriginal peer-
reviewed articles published between 2000 (after the
establishment of MMV) and 2015 were retrieved. We
included preclinical studies and all clinical trial phases.
If trial results were unavailable, we referenced the study
either by its clinicaltrial.gov identifier or using the
company press release newsletters.
Two of the authors of this paper (ASB and AAE)

checked all potentially relevant studies and reached a
consensus on all items. One of the authors (ASB)
screened the titles and abstracts. Two authors (ASB and
AAE) selected the studies for inclusion after reviewing
full-text articles. The following keywords were entered
into the search field to search for titles, abstracts, and
index terms: novel* AND antimalarial* AND preclinical*
AND clinical trials* AND plasmodium falciparum* AND
plasmodium vivax* AND malaria* AND medicine for
malaria venture*. Data were updated in January 2016.
Extracted data were based on information reported in

or calculated from the included studies. Authors were
not contacted for additional information regarding the
drug or trial information. The following information was
retrieved from clinicaltrials.gov therapeutic agent, class
of drug, site of action, clinical phase, control group,
study population, and therapeutic doses. We only exam-
ined information on antimalarial drug efficacy and
safety.

Pharmacological approaches
Phenotypic molecules for malaria
KAE609
Advances in automation and phenotypic assay screening
techniques have aided the discovery of innovative com-
pounds effective against both asexual and sexual stages
of P. falciparum. Spiroindolone KAE609 (cipargamin), a
potential Na+-ATPase 4 ion channel (PfATP4) inhibitor,
was discovered by scientists from the Swiss Tropical and
Public Health Institute and developed by the Novartis
Institute of Tropical Diseases in Singapore. KAE609
originated from the high-throughput phenotypic screen-
ing of nearly 12 000 natural compounds evaluated for
their activity against erythrocytic stages of P. falciparum
[15]. Encouraging results were reported in a Phase I hu-
man trial with elevated MICs in the plasma for several
days, and total efficacy doses of 300 mg (single) and
150 mg (multiple) for three days [16, 17]. Interestingly,
KAE609 is seven times more potent than artesunate and

40 times more potent than 4-aminoquinolines [18].
Results from a recent Phase II clinical trial conducted
among Thai patients indicated a clearance half-life of
0.90 h for P. falciparum and 0.95 h for P. vivax. Further-
more, the mean terminal half-life for the elimination of
KAE609 was 20.8 h, supporting a once-daily oral dosing
regimen [18]. The promising profile of KAE609 will be
evaluated further in upcoming early phase trials. In vitro,
KAE609 showed active against artemisinin-resistant K
13 mutant parasite and prevents recrudescence of
dihydeoartemisinin (DHA)- arrested ring at minimal
concentration (50 nM) [19]. Thus can as a broad range
antimalarial and in treatment of multidrug-resistant
P.facliparum malaria.

DDD107498
Advances in natural-product-based screening techniques
have improved our understanding of medicinal chemis-
try via chemoinformatics. A high-throughput screening
of more than 4 700 compounds resulted in a promising
scaffold, which led to the discovery of DDD107498, a
novel phenotypic molecule that specifically acts against
liver-stage P. falciparum malaria. This molecule was de-
veloped at the University of Dundee, UK by a research
consortium [20]. The DDD107498 compound is a 2,6-di-
substituted quinoline-4-carboxamide scaffold effective
against the liver (schizont formation) stage. In vitro as-
says against different P. falciparum laboratory strains,
such as artemisinin-resistant strains, chloroquine-, amo-
diaquine- and mefloquine-resistant strains, revealed a
low micromolar range against the parasite. In addition,
the compound impaired the growth of other strains in-
cluding P. berghei and P. yoelii during their schizont for-
mation stage. DDD107498 may be effective against
multidrug resistant Plasmodium strains (Dd2 and 7G8).
Remarkably, the ex vivo efficacy of DDD107498 has been
shown to be higher than artesunate against P. falcip-
arum (median EC50 = 0.81 nM [range 0.29–3.29 nM])
and P. vivax (median EC50 = 0.51 nM [range 0.25–1.39
nM]) [20]. DDD107498 has shown excellent oral bio-
availability and a longer plasma half-life, which is prefer-
able for single-dose treatment in vitro. These results
suggest that DDD107498 can achieve complete parasitic
clearance in the blood stage by rapid killing for more
than 48 h. DDD107498 is currently in the developmental
stage and needs to be tested for approval in human clin-
ical trials.

KAF156
KAF156 (also known as imidazolopiperazine), a promis-
ing chemoprevention molecule, is a cyclic amine resist-
ance locus inhibitor (PfCARL) developed by the
Novartis research consortium [21]. In vitro KAF156 is
active against uncomplicated P. falciparum and P. vivax
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strains in the liver, asexual erythrocytic, and transmis-
sion stages. One recently published paper reported a
KAF156 Phase II proof-of-concept trial [22] conducted
among Vietnamese and Thai monoinfection patients,
who were treated with 400 mg/day for three days and a
single 800 mg dose. No efficacy data are yet available on
KAF156 and no predictions can be made about its po-
tential as a future antimalarial drug. Adverse events re-
ported with higher doses of KAF156 include sinus
bradycardia, thrombocytopenia, and hypokalemia. Fur-
ther studies are needed to evaluate the molecule’s side
effects.

DSM265
DSM265, a dihydroorotate dehydrogenase (DHODH) in-
hibitor acting against the liver (schizont formation)
stage, is proving to be promising as a one-dose (400 mg)
malaria cure in a Phase I trial in healthy volunteers, with
an encouraging safety profile. DSM265 is currently in
the clinical developmental stage (Phase II) in Peru
(NCT02123290). Its activity against uncomplicated P.
falciparum and P. vivax parasites is being assessed in
adult patients using a single dose treatment (400 mg)
[23]. However, no clinical data are yet available to con-
firm DSM265 as a potential antimalarial armory. Al-
though DSM265 showed robust results in Phase I trials,
further studies are needed to predict its safety for use in
pregnant women.
In most countries in SSA, malaria in pregnancy con-

tributes to significant maternal and perinatal mortality.
It is not recommended to use ACTs during the first tri-
mester due to side effects observed in preclinical models
[24]. Currently, sulfadoxine-pyrimethamine is used in
pregnant women as an intermittent preventive treatment
to reduce infections and improve pregnancy outcomes.
Several optional antibacterials and antifolate combina-
tions have emerged including azithromycin-chloroquine,
mefloquine, and dihydroartemisinin-piperaquine. Anti-
bacterial combinations potentially reduce the risk of
sexually transmitted diseases to mothers and newborns
[25]. Studies registered in clinicaltrials.gov on co-
trimoxazole prophylaxis for prevention of malaria in
pregnancy (NCT01053325) and co-infection with mal-
aria and HIV in women (NCT00970879) were com-
pleted in 2013, but results have not yet been published.
Moreover, mefloquine has shown significant benefits but
may cause nausea and neuropsychiatric side effects [26].
To fulfill the GMAP portfolio, determining the safety of
novel chemoprotective molecules in pregnancy should
be considered a priority in clinical investigations.

Other compounds under development
Several molecules are currently being tested in pre-
clinical models. Examples include SJ557733, developed

in collaboration between St. Jude Children’s Research
Hospital, TN, USA and Rutgers University, NJ, USA
[27], and PA21A092 developed at Drexel University,
PA, USA [28]. Both molecules target the PfATP4 of
multiple Plasmodium species at different stages of
infection. Another similar phenotypic molecule known
as MMV390048, developed by researchers at the
University of Cape Town in South Africa, targets lipid
phosphatidyl inositol 4-kinase (PfPI4K) [29]. The
MMV390048 research group has completed a Phase I
trial on healthy African volunteers for the first time,
but results have not yet been published (registered in
clinicaltrials.gov; NCT02230579). Although additional
novel phenotypic molecules are currently being clinic-
ally tested against malaria (see Table 2), more studies
are needed to elucidate their clinical effectiveness and
safety. Genetic polymorphism in pfcrt is associated
with chloroquine resistance. Additional polymor-
phisms (dhfr and dhps) for sulfadoxine-pyrimethamine
and polymorphism of P. falciparum multidrug resist-
ance protein 1 (pfmdr1) are associated with resistance
to chloroquine, mefloquine, quinine, and artemisinin
[30]. Novel loci such as encoding the mu chain of the
adopter protein 2 (ap2-mu), P. falciparum ap2-mu
(Pfap2-mu) homologue [27], gene mutations encoding
pfmdr1, and sarco-endoplasmic reticulum calcium
ATPase6 (PfSERCA) [31] may be associated with anti-
malarial resistance. Emerging evidence shows that
pfmdr 1, pfcrt, and pf3d7-1343700 Kelch propeller
(K13-propeller) mutations are potential markers indi-
cating that P. falciparum is developing resistance to
artemisinin and its derivatives [32, 33].

Synthetic medicinal arsenals
OZ277 and OZ439
Quinine, first used in Europe in the 17th century, chloro-
quine [34], and 4-aminoquinoline scaffolds are some of the
semi-synthetic drugs that have shown good antimalarial
activity over the years. Fixed-dose combinations of artemi-
sinin derivatives are currently considered to be the gold-
standard malaria treatment. Synthetic artemisinin-like
endoperoxides and their derivatives (artesunate, artemether,
and dihydroartemisinin) have been proven to be more
effective than chloroquine. OZ277 (arterolane), a novel
non-artemisinin ozonide compound, has been developed
by Ranbaxy Laboratories in collaboration with MMV in
2004. The clinical activity of OZ277 in a Phase II dose-
finding trial for uncomplicated P. falciparum malaria was
shown to be not as effective as artemisinin. This was indi-
cated by the reduced parasitic clearance on day 28 after
seven days (60–70 %) compared to artesunate dose–re-
sponse (95 %) [34]. Thus, increasing the dose does not
necessarily decrease parasitic recrudescence. Following a
Phase III trial in 2013, a fixed-dose combination of OZ277
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(arterolane) (150 mg) and long-acting piperaquine
(750 mg) (Synriam™) was tested for treating P. falciparum
malaria in India and received mark approval from the Drug
Controller General of India. It was subsequently put on the
market in seven African countries [35]. Due to a subopti-
mal half-life and reduced stability in low-level parasitemia
(1 % at 45 % haematocrit), OZ277 failed to show efficacy
against high parasitic loads [36]. The results of these trials
confirmed the safety of the compounds but not the efficacy,
even when doses were increased in the presence of a high
level of infected erythrocytes. Drug partners may be needed
to increase efficacy. These weaknesses have led MMV to
develop a potential next generation synthetic endoperoxide
ozonide, OZ439 (artefenomel), which has a longer half-life
(30 h) and a MIC of more than one week, after a single
dose. OZ439 is the first highly active ozonide against
Plasmodium [36].
Different doses of artefenomel (200–1 200 mg) were

tested in a Phase IIA exploratory, open-label trial and
revealed promising safety and efficacy profiles among
Southeast Asian adults with uncomplicated P. falciparum
and P. vivax malaria. Due to the reduced elimination half-
life of 46–62 h, a single dose of OZ439 alone or in combin-
ation with piperaquine can eliminate 98.0 % of P. falcip-
arum and 99.6 % of P. vivax within 36 h. Artefenomel has
demonstrated a higher parasitic clearance within the first
24 h in P. vivax patients as compared to P. falciparum
patients (30–36 h). However, gametocyte clearance was

100 % in patients who were administered 1 200 mg of
artefenomel within 48 h [36]. OZ439 is now being evalu-
ated with piperaquine in Phase IIB combination trials.
One of the major concerns about the use of OZ

compounds is that they have a similar endoperoxide struc-
ture to artemisinin, indicating possible treatment failures.
Previous data suggest that artemisinin derivatives are asso-
ciated with the risk of spontaneous abortions in early preg-
nancies [37], but recent clinical evidence confirmed the
safety of ACTs against P. falciparum and P. vivax in the
first trimester, with no risk of spontaneous abortions or
major congenital malformations [38]. Similarly, preclinical
studies have shown that OZ compounds are also safe for
embryos and fetuses [39]. No clinical data are yet available
to prove the safety of using these compounds in pregnancy
and more tests are therefore needed for their evaluation.

Other compounds
Two interesting endoperoxides from artesunate derivatives
including artemisone (BAY 44–9585) and tetraxoane (TDD
E209), are examples of other synthetic candidates currently
under development. Artemisone is a semi-synthetic
second-generation artemisinin derivative developed in col-
laboration between Bayer HealthCare Pharmaceuticals in
Germany and the Hong Kong University of Science and
Technology. Results of preclinical studies are highly prom-
ising as compared to other novel artemisinins. Artemisone
is more effective than artesunate against P. falciparum and

Table 2 Novel antimalarial candidates in preclinical stage

References Molecules Class Mechanism of action

[66] P218 PfDHFR (Diaminooyridine) Dihydrofolate reductase inhibitor

[67] DSM265 Triazolopymrimidine Dihydroorotate dehydrogenase

[68] Decoquinate PfCYTbc1 Cytochromebc1

[69] KAF156 PfCARL Cyclic amine resistance locus protein

[21] 21A092 Pyrazole Unknown

[70] ELQ-300 Quinolone-3-diarylether Cytochrome bc1

[71] RKA182 1,2,4,5-tetraoxane Hemoglobin digestion

[72] BCX4945 Immucillin G Purine nucleoside phosphorylation

[73] NPC-1161B 8-aminoquinoline Unknown

[74] SB939 PfHDAC1 Histone deacetylase

[75] Falcitidin PfFP2-3 Falcipain cysteine protease 2-3

[76] GSK932121 PfCYTbc1 Cytochromebc1

[28] SJ557733 PfATP4 Na + −ATPase 4

[77] Trichostatin A PfHDAC1 Histone deacetylation

[78] TCMDC-134674 PfCHT1,2,4 Aspertic protease plasmepsins 1,2,4

[79] E6446 TLR-9 Proinflammatory cytokines antagonist

[80] MK4815 Aminoindoles Mitochondrial electron transport chain inhibitor

[81] Genz668764 Carboxamide DHOD inhibition

[82] RKA 182 1,2,4,5-tetraoxane Hemoglobin digestion
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multidrug resistant strains [40, 41]. Dose-escalating Phase I
trials on healthy volunteers have shown that artemisone is a
rapidly effective treatment as it achieves peak plasma con-
centrations within 30 min following oral administration
[41]. A Phase II interventional study testing artemisone for
treating uncomplicated P. falciparum malaria planned for
Western Cambodia (NCT00936767) has been withdrawn
for unknown reasons. Some studies reported neurological
and auditory side effects such as ataxia and slurred speech
[42, 43] due to ACTs. However, no strong evidence exists
to confirm neurological side effects. Furthermore, the activ-
ity of artemisone has shown a GM IC50s correlation with
pfmdr1 Y184F mutations, which potentially reduces sensi-
tivity to artemisinin-resistant strains and contributes to
emerging ACT resistance [44]. Recent genome-wide associ-
ation studies revealed that artemisone does not interact
with Y1915 and has no effect on P.falciparum
phosphatidylinositol-3 kinase (PfPI3K) [45].

Aminoquinoline scaffolds
Ferroquine
Ferroquine is an ameliorated blood-schizonticidal 4-
aminoquinoline developed by Sanofi-Aventis. Along with
OZ439, it is a more effective parasite-killing compound
against Plasmodium strains when compared to artesu-
nate. Several preclinical studies have shown its benefits,
particularly for treating patients infected with chloro-
quine-, amodiaquine-, and mefloquine-resistant malaria
strains [46–48]. The greatest advantage of using ferro-
quine is its 30-h half-life, which is highly superior to that
of other artemisinin derivatives. Two ferroquine Phase II
trials were recently registered in the clinicaltrials.gov
database (NCT02497612 and NCT00988507) focusing
on P. falciparum and P. vivax malaria at the multicenter
level. One study has been completed (NCT00988507)
but no results are yet available. Most recently, a
ferroquine-artesunate dose-ranging Phase II trial on P.
falciparum-infected adults and children in eight African
hospitals was conducted [49]. The research findings
were astonishing: 97 % polymerase chain reaction
(PCR)-confirmed cure rates (95 % CI: 90–100) after
treatment with 2 mg/kg ferroquine combined with
4 mg/kg artesunate. However, the cure rate was reduced
(79 %; 95%CI: 68–88) when ferroquine monotherapy
4 mg/kg/day for 3-days regimen was used. Furthermore,
exacerbated malaria symptoms were observed in 14 % of
the individuals in the treatment cohort.

AQ-13
Another 4-aminoquinoline derivative called AQ-13
(Ro47-0543), a similarly structured chloroquine with a
modified propyl side chain from the aminoquine panel,
was developed in collaboration between Tulane Univer-
sity and Louisiana State University both located in LA,

USA. Preclinical studies have indicated increased efficacy
of AQ-13 when compared to other derivatives [50].
Phase I first-in-human safety and efficacy studies have
shown results similar to those observed with chloro-
quine. Adverse events include electrocardiac changes,
especially prolonged QTc intervals, which are commonly
encountered with many quinolones [51]. AQ-13 did not
present any advantages over other aminoquinolines, and
further observation of this compound has currently been
halted.

Tafenoquine
The majority of clinical trials focus on malaria caused by
P. falciparum, while fewer studies evaluate treatments
against P. vivax and P. ovale malaria. A deficiency of
glucose-6-phosphate dehydrogenase (G6PD) is a heredi-
tary enzyme defect condition that causes episodic
hemolysis. Patients with a G6PD deficiency are common
in malaria-endemic countries and are at high risk of
hemolysis due to treatment with antimalarial drugs
(primaquine, chloroquine, quinine, and sulfamethoxa-
zole). These patients are generally not included in trials
due genotypic variations. For these individuals, tafeno-
quine (WR 238605) is a good alternative drug. It is an 8-
aminoquinoline derivative and has a similar mode of ac-
tion to primaquine against hypnozoites, gametocytes,
and liver stages [52]. Tafenoquine is more potent during
blood stages due its longer half-life (14 days) as com-
pared to primaquine. Nevertheless, slower parasitic
clearance was observed with tafenoquine monotherapy.
Therefore, combing tafenoquine with other partner
drugs may ideally benefit G6PD-deficient patients. So
far, chloroquine combined with primaquine has been
used for the radical cure of P. vivax malaria. Tafeno-
quine with chloroquine was tested in studies against P.
vivax malaria. In a Phase IIB dose-ranging trial, different
doses of tafenoquine alone (50, 100, 300, or 600 mg) or
in combination with 15 mg primaquine for 14 days were
tested, with a fixed dose of chloroquine for three days. A
single dose of tafenoquine (300 mg) co-administered
with chloroquine was shown to prevent relapse in
89.2 % (95 % CI: 77–95) of people as compared to
chloroquine alone (51.7 %; 95 % CI: 36–69) during the
first six months of follow-up [53]. Recent results of a
Phase IIB dose-ranging trial (DETECTIVE study) con-
ducted on monoinfected P. vivax patients for radical
cure showed that single-dose tafenoquine (300 mg) com-
bined to chloroquine is more efficacious in preventing
relapses as compared to chloroquine alone, with a simi-
lar safety profile. Based on these observations, GSK and
MMV announced two new Phase III studies: 1) a DE-
TECTIVE study (TAF112582) to evaluate the efficacy,
safety, and tolerability of tafenoquine co-administered
with chloroquine as a radical cure for P. vivax malaria
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(blood-stage antimalarial treatment); and 2) a GATHER
study (TAF 116546) to assess the incidence of hemolysis
and the efficacy and safety of tafenoquine over prima-
quine [54].

Biomolecular approaches
Methylene blue
A century ago, the German scientist Paul Ehrlich discov-
ered the antiplasmodial activity of methylene blue [55].
The chemotherapeutic use of synthetic methylene blue
in treating methemoglobinemia and cancer-induced
neurotoxicity was tested in 1995 [56]. Additional experi-
ments were conducted using methylene blue and its ana-
logs against P. falciparum isolates [57]. Methylene blue
combined with chloroquine has been shown to prevent
hemolysis in G6PD-deficient adult patients. Other stud-
ies assessed the use of different doses of methylene blue
with chloroquine for three days and showed 90 % recov-
ery rates in patients with uncomplicated P. falciparum
malaria. Although results were promising, adverse ef-
fects were reported including vomiting, as well as the
discoloration of urine, mucous surfaces, and teeth [58].
Drug resistance to chloroquine has also emerged glo-
bally [59]. In 2006, methylene blue was evaluated in
combination with artesunate but showed poor cure rates
despite rapid parasitic clearance [60]. In 2011, treatment
with artesunate-amodiaquine-methylene blue was stud-
ied in children aged between six and 50 months with un-
complicated P. falciparum malaria. This combination
showed poor efficacy (71 %) when compared to the con-
trol group (artesunate-amodiaquine; 85 %) [61]. How-
ever, after comparing a fixed dose 15 mg/kg of
methylene blue co-administered with artesunate or amo-
diaquine versus artesunate-amodiaquine for three days,
decreased gametocytes (from 100 to 36 %) were reported
within seven days of treatment. Interestingly, the pro-
nounced effect on gametocyte clearance indicates that
methylene blue is a new promising drug component to
reduce P. falciparum transmission. A Phase I trial testing
the combination of methylene blue with primaquine is
currently registered in the clinicaltrials.gov database
(NCT01668433), but results are not yet available.

Antibiotics
Fosmidomycin
Isoprenoids are derived from the mevalonate pathway in
humans, an essential metabolic pathway for parasite syn-
thesis. Jomaa Pharma GmbH developed a synthetic anti-
biotic agent called fosmidomycin derived from
Streptomyces lavendulae bacterial isolates. This com-
pound inhibits the non-mevalonate pathway (also known
as the DOXP pathway), essential for the synthesis of
parasite isoprenoids [62]. Fosmidomycin has a half-life
of only two hours and acts rapidly upon oral

administration. Additional trials to evaluate the efficacy
of different doses of fosmidomycin monotherapy under-
taken for more than four days are required. One study
indicated complete parasitic clearance on day seven fol-
lowing administration of fosmidomycin (1 200 mg four
times a day) in adult patients with uncomplicated P. fal-
ciparum malaria. On day 28, recrudescence was
observed in seven out of nine patients, indicating mono-
therapy failure [63]. Fosmidomycin co-administered with
clindamycin has been proven to be effective in adults
and older children with acute uncomplicated P. falcip-
arum malaria. Poor efficacy was observed due to poor
immunity in children aged between one an>d two years
[64]. Two additional short half-life combinations (fosmi-
domycin with artesunate) were evaluated in 50 children
aged between six and 12 years. Five different
fosmidomycin-artesunate regimens achieved complete
cure rates within three days of administration, and no
resistant alleles were detected after seven and 28 days
[65]. However, no evidence of prolonged protection by
this combination was provided. A Phase IIA open-label
efficacy trial focusing on fosmidomycin (450 mg capsule;
twice daily) and piperaquine (320 mg; once daily) for
treating patients with uncomplicated P. falciparum mal-
aria, aged between one and 60 years and with a body
weight between 5 and 90 kg, is currently registered in
the clinicaltrials.gov database (NCT02198807). Overall,
studies indicated that fosmidomycin is only effective for
short-term treatment. Studies on finding a potential
partner drug to prove the efficiency of fosmidomycin ur-
gently need to be conducted.

Conclusions
In this review, we summarized the different approaches
tested over the years to control the malaria pandemic,
and possibly reduce global malaria incidence and mor-
tality by 90 % before 2030. Novel chemotherapeutic ap-
proaches have emerged over the past five years, with
promising results. Nevertheless, the efficacy and safety
of these drugs need to be studied further. These novel
antimalarial approaches are multifaceted, thus there is
an urgent need for effective single-dose molecules to act
during the liver and blood stages of malaria. Effective
compounds should be developed before global emer-
gence of resistance to artemisinin derivatives and 4-
aminoquinoline. There is currently no low-dose prima-
quine regimen for pediatric use. Novel blood-stage com-
pounds such as DDD107498 and tafenoquine should
focus on blocking parasite transmission in children and
adolescents, and pregnant women. Molecules such as
ferroquine should be combined with a potential partner
drug to enhance efficacy. Additional challenges in pre-
venting the relapse of malaria episodes include
hemolysis in patients with a G6PD deficiency, treatment
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for drug-resistant strains, pediatric dosing, serious drug-
drug interactions, transmission blocking, radical cure,
and relapse prevention. Potentially targeting mitochon-
drial electron-transport chain of P.falciparum and pro-
tein inhibition in blood- and liver-stage parasites could
be ideal for future drug development.
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