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Abstract

Background: Mass drug administration (MDA) programmes for the control of lymphatic filariasis in Ghana, have
been ongoing in some endemic districts for 16 years. The current study aimed to assess factors that govern the
success of MDA programmes for breaking transmission of lymphatic filariasis in Ghana.

Methods: The study was undertaken in two “hotspot” districts (Ahanta West and Kassena Nankana West) and two
control districts (Mpohor and Bongo) in Ghana. Mosquitoes were collected and identified using morphological and
molecular tools. A proportion of the cibarial armatures of each species was examined. Dissections were performed
on Anopheles gambiae for filarial worm detection. A questionnaire was administered to obtain information on MDA
compliance and vector control activities. Data were compared between districts to determine factors that might
explain persistent transmission of lymphatic filariasis.

Results: High numbers of mosquitoes were sampled in Ahanta West district compared to Mpohor district (F = 16.
09, P = 0.002). There was no significant difference between the numbers of mosquitoes collected in Kassena
Nankana West and Bongo districts (F = 2.16, P = 0.185). Mansonia species were predominant in Ahanta West district.
An. coluzzii mosquitoes were prevalent in all districts. An. melas with infected and infective filarial worms was found
only in Ahanta West district. No differences were found in cibarial teeth numbers and shape for mosquito species
in the surveyed districts. Reported MDA coverage was high in all districts. The average use of bednet and indoor
residual spraying was 82.4 and 66.2%, respectively. There was high compliance in the five preceding MDA rounds in
Ahanta West and Kassena Nankana West districts, both considered hotspots of lymphatic filariasis transmission.

Conclusions: The study on persistent transmission of lymphatic filariasis in the two areas in Ghana present
information that shows the importance of local understanding of factors affecting control and elimination of
lymphatic filariasis. Unlike Kassena Nankana West district where transmission dynamics could be explained by initial
infection prevalence and low vector densities, ongoing lymphatic filariasis transmission in Ahanta West district
might be explained by high biting rates of An. gambiae and initial infection prevalence, coupled with high densities
of An. melas and Mansonia vector species that have low or no teeth and exhibiting limitation.
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Multilingual abstract
Please see Additional file 1 for translations of the ab-
stract into five official working languages of the United
Nations.

Background
Lymphatic filariasis is a debilitating disease affecting the
health, productivity and wellbeing of infected individuals
and communities [1, 2]. Over 90% of infections worldwide
is caused by Wuchereria bancrofti and the remaining by
Brugia species [3]. Mosquitoes belonging to the genera
Aedes, Anopheles, Coquillitedia, Culex and Mansonia (de-
pending on their geographical location) are involved in
transmission [4]. In Ghana, the main vectors are An. gam-
biae and An. funestus senso lato (s.l.) and the minor are
An. pharoensis [5] and Mansonia species [6].
It is assumed that in areas where the primary vectors are

Anopheles species, about 5–6 rounds of mass drug adminis-
tration (MDA) should be effective in breaking transmission
of lymphatic filariasis [7]. This assumption did not consider
confounding factors such as spatial heterogeneities which,
when included in an intervention model, may give predic-
tions that could exceed the 5–6 rounds of MDA even with
> 65% MDA coverage for achieving lymphatic filariasis
elimination in various endemic areas [8]. A scenario mod-
elled by Michael et al. [8] suggested that with the current
MDA regimen, Ghana is likely to eliminate lymphatic filar-
iasis by 2020. However, the authors indicated that lymph-
atic filariasis transmission is focal due to a number of
factors including spatial heterogeneities [8]. This therefore
implies that interventions should at best consider these
unique factors in each endemic foci. In Ghana, MDA com-
menced in five districts in the year 2000, and was scaled up
to cover all endemic districts by 2006 [9]. Hence, by 2014,
each endemic district had received at least eight rounds of
MDA, which was expected to have interrupted transmis-
sion. However, evaluations revealed that infections still per-
sisted in 22 districts (termed “hotspot” districts) with
microfilariae (mf) prevalence greater than 1% [10].
The persistent transmission of lymphatic filariasis may

be influenced by different factors [11–14]. These include
pre-control lymphatic filariasis prevalence and infection
intensity, population treatment coverage and compli-
ance, vector competence and vectorial capacity and
socio-cultural factors. Wuchereria bancrofti transmission
in a vector population depends on the ability of mosqui-
toes to ingest and support the development of mf [15].
Importantly, mf ingested is affected by cibarial teeth, a
physical barrier in the foregut of mosquitoes. This may
influence the dynamics of filarial transmission and im-
pact on control measures [16]. Additionally, the initi-
ation of infections for W. bancrofti depends on the
availability of vector species and high vector biting rates
[17]. The success of MDA also depends on the extent of

the population treatment coverage. The recommended
population treatment coverage by WHO should exceed
65% of the endemic population [18]. Indeed, such MDA
treatment coverage rates, coupled with effective compli-
ance (i.e. willingness of individuals to ingest the drug),
are necessary for a successful MDA programme.
In Ghana, lymphatic filariasis transmission persists in

several districts, even after more than ten rounds of
MDA, despite reported average treatment coverage rates
of > 65%. Consequently, these districts are labelled as
“hotspots”. Other districts have successfully passed a
transmission assessment survey (TAS), and hence, MDA
has been stopped [9]. For the current study, the latter
districts are termed “control”. Our objective was to de-
termine factors that influence the transmission of
lymphatic filariasis, in selected hotspots and control dis-
tricts in the Western and Upper East regions of Ghana.

Methods
Study sites
The study was conducted in eight communities from
four districts in Ghana. There were four communities in
two hotspot districts; namely, Asemkow (geographical
coordinates 4°82’ N latitude, 1°88’ W longitude) and
Antseambua (4°85’ N latitude, 1°93’ W longitude) in the
Ahanta West district; and Badunu (10°96’ N latitude, 1°
06’ W longitude) and Navio Central (10°96’ N latitude,
1°05’ W longitude) in the Kassena Nankana West dis-
trict. Additionally, there were four communities in two
control districts; namely, Balungo Nabiisi (10°93’ N lati-
tude, 0°84’ W longitude) and Atampiisi Bongo (10°91’ N
latitude, 0°82’ W longitude) in the Bongo district and
Ampeasem (5°04’ N latitude, 1°94’ W longitude) and
Obrayebona (5°00’ N latitude, 1°87’ W longitude) in the
Mpohor district. The Ahanta West and Mpohor districts
belong to the high rain forest vegetation climatic zone,
whilst Kassena Nankana West and Bongo districts have
sub-Sahelian climate (Fig. 1).

Mosquito collection and processing
Entomological surveys were conducted monthly in
all the study communities. Mosquitoes were col-
lected over a 13-month period from the beginning of
July 2015 to the end of July 2016. Samples were col-
lected using window exit traps, pyrethroid spray
catches and human landing catches [17]. In each dis-
trict, there were 16 community vector collectors
(CVCs). Each district had two communities selected
and the eight CVCs divided into two teams (four per
team). Human landing catches involved two CVCs
sampling indoor, and the other two outdoor in two
different households simultaneously for every sam-
pling night. Mosquitoes were collected hourly from
21:00 to 5:00 the next morning. Starting human
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landing catches earlier instead of the 21:00 would
not have had any significant impact on the results as
relatively few An. gambiae s.l. bite before 21:00 in
the Upper East Region [19]. This time was therefore
replicated in other districts to have a uniform set-
ting. Pyrethrum spray collection was done by the
CVCs from 5:00 to 8:00 in up to ten different
households. Before every sampling night, two win-
dow exit traps were fixed in two different house-
holds at 18:00 and removed after 8:00 the next
morning. Sampling was done twice a month in two
different households every catch night in each com-
munity. All mosquitoes were identified at species
level, using morphologic identification keys [20, 21].
Molecular identification was done by extracting DNA

from mosquito legs using a standard protocol described
by Xu et al. [22]. Sibling species of An. gambiae complex
were identified using polymerase chain reaction (PCR),
as described by Scott et al. [23]. This was followed by re-
striction fragment length polymorphism (RFLP) to dis-
tinguish the species An. coluzzii and An. gambiae senso
stricto (s.s.) [24].

Assessment of infection and infectivity rates in An.
gambiae
In general, the rationale for selecting mosquitoes was
aimed at having proportional numbers of mosquitoes in
the various districts dissected for the estimation of infec-
tion and infectivity. Samples collected with human landing
catches were used to estimate infection, infectivity and an-
nual biting rate (ABR). For estimation of infection and in-
fectivity rates, An. gambiae samples were dissected and
observed for the various stages of the parasites [17].

Cibarial armature characterisation
The heads of 224 mosquitoes (anophelines and culicines)
consisting of 14 mosquitoes per species for each district
were selected with reference to similar studies [11, 25, 26].
The mosquito heads were detached and placed in a 1.5ml
microcentrifuge tube containing clearing medium (consist-
ing of equal volumes of chloral hydrate and phenol) [11].
Tubes were kept in the dark for about a week to clear the
mosquito heads [11]. Clearing took longer for dark (highly
melanised) mosquitoes, such as Aedes species (approxi-
mately one month). After clearing, the mosquito heads

Fig. 1 Map showing lymphatic filariasis study districts from the Western and Upper East regions of Ghana
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were placed on a clean glass slide and a drop of Puri’s
(mounting) medium was added before covering with a
cover slip. The heads were mounted dorso-ventrally to en-
hance viewing and counting of the cibarial teeth. The cibar-
ial armature was observed under a compound microscope
at X 1000 magnification. The mounted mosquito head was
kept at room temperature for at least 1 week and the total
number of cibarial teeth counted and recorded.

Questionnaire survey
Our study pursued a cross-sectional design with ques-
tionnaires randomly administered to individuals in the
various districts. The questionnaire sought to obtain in-
formation about treatment compliance and involvement
in vector control activities in the study districts. Before
this study, the questionnaire was validated using the re-
sults of a pre-test. This was to serve as a quality control.

Statistical analysis
Data were entered using Microsoft Excel (2013 version)
and imported into STATA version 11 (Stata Corporation;
College Station, TX, USA). We checked for significant dif-
ferences of the cibarial teeth numbers according to mos-
quito species, and of mosquito abundance comparing
hotspot and control sites using F-test. Data obtained from
the National Neglected Tropical Diseases Control
Programme Unit pertaining to MDA coverage in the vari-
ous communities within the various districts were entered
in Excel and annual frequencies of MDA coverages calcu-
lated at the unit of the district. The frequencies for MDA
compliance were analysed using EpiInfo version 7 (Centers
for Disease Control and Prevention; Atlanta, GA, USA).
P-values ≤0.05 were considered statistically significant. En-
tomological parameters assessed included:

� Infection rate: proportion of mosquitoes found
infected after dissection with any W. bancrofti larval
stage:
[Number of mosquitoes with (mf or L1 or L2 or L3)]
/ [Number of mosquitoes dissected] × 100

� Infectivity rate: proportion of mosquitoes found
infected with one or more infective larvae: [Number
of mosquitoes with L3] / [Number of mosquitoes
dissected] × 100

� ABR: estimated number of mosquitoes biting a
human per year:
[(Number of mosquitoes caught) / (Number of catchers
× number of catch night)] × 365 days [17, 27, 28].

Results
Mosquito species composition and abundance
A total of 31 064 mosquitoes were sampled from all the
study areas. There was a significant difference in the
number of mosquitoes collected from Ahanta West

district compared to Mpohor district in the Western re-
gion (F = 16.09, P = 0.002). No difference was observed
between hotspot and control districts for the Upper East
(F = 2.16, P = 0.185). The mosquitoes collected in this
study were Aedes species, An. coustani, An. gambiae s.l.,
An. pharoensis, Culex species and Mansonia species. An.
gambiae s.l., which serves as the principal vector of
lymphatic filariasis in Ghana, was the most abundant
mosquito species sampled in hotspot and control dis-
tricts in both the Western and Upper East regions. Rela-
tively higher numbers were sampled from the Ahanta
West district (Table 1). Figure 2 shows the total number
of An. gambiae mosquitoes sampled for the various
months from all the study areas. The ABR for An. gam-
biae mosquitoes sampled by human landing catches in
Ahanta West, Mpohor, Kassena Nankana West and
Bongo districts were 15 987, 3604, 376 and 306 bites per
person, respectively (Table 2). There was a significant
difference in ABR between Ahanta West and Mpohor
districts (F = 15.16, P = 0.001), but not between Kassena
Nankana West and Bongo districts (F = 0.13, P = 0.718).
Mosquitoes belonging to the genus Mansonia were the
second most abundant sampled in Ahanta West district
(n = 2434) compared to Mpohor (n = 80). The Upper
East region, however, had Culex being the second most
abundant species with relatively high numbers sampled
from Kassena Nankana West district (n = 879) compared
to Bongo (n = 626). In Ahanta West district, more Culex
species were collected compared to Mpohor district.
Relatively low numbers of Aedes, An. pharoensis and An.
coustani were sampled from all study areas in the West-
ern and Upper East regions.
Molecular identification of the An. gambiae complex

showed that An. gambiae s.s., An. melas and An. arabien-
sis were the only species identified as sibling species. An.
arabiensis were identified in both hotspot and control dis-
tricts in the Upper East region, whilst An. melas were
found only in Ahanta West district in the Western region.
Further molecular analysis of An. gambiae s.s. indicated
that An. coluzzii (previously the M form of An. gambiae
s.s.) [29] was the only species in the study areas.

Infection and infectivity rate for An. gambiae complex
A total of 1116 mosquitoes were selected for the 13
months spanning both wet and dry seasons in all dis-
tricts. Ahanta West, Mpohor, Kassena Nankana West
and Bongo districts had a total of 320, 368, 217 and 211
mosquitoes dissected, respectively. A total of eight mos-
quitoes were found positive for the various stages of the
filarial parasite (L1, L2 and L3), with two samples being
infective (L3). All samples found positive were An. melas
found only in the Ahanta West district. The average in-
fection and infectivity rates were (0.025 [2.5%], 95% CI:
0.8–4.2) and (0.006 [0.6%], 95% CI: 0.0–1.5) respectively.
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The presence of W. bancrofti was confirmed [30].
Dissected samples from Mpohor, Kassena Nankana
West and Bongo districts all tested negative for filar-
ial parasites.

Cibarial armature characterisation
Out of 224 mosquito heads processed, 140 samples
properly cleared, and hence, were used for cibarial
armature analysis. These samples were from both hot-
spot and control districts. The observation of the
cibarial teeth of An. gambiae complex all showed that
the teeth were sharp, pointed and long, but relatively
fewer than that of An. pharoensis, which had pointed
deep–rooted narrow based teeth. Culex species had
the highest number of teeth, which were short, small
sized and blunt. Aedes, Ma. uniformis and Ma. afri-
cana species had no cibarial teeth. The above descrip-
tion for the structure and shape of the cibarial teeth

was similar for all mosquito species from hotspot and
control districts in the two regions (Table 3). The
structure of cibarial armatures of the various species
are shown in Fig. 3. The mosquito species with the
highest mean number of teeth was observed among
Culex mosquitoes for both hotspot and control sites
in the Western and Upper East regions, and the low-
est observed in An. melas, which was found only in
Ahanta West district (Table 3). There were no signifi-
cant differences in the mean number of teeth between
An. coluzzii (F = 2.12, P = 0.243) from hotspot and
control study areas in the Western region. The same
was observed for Culex (F = 3.00, P = 0.250) from this
region. Results from Bongo and Kassena Nankana
West districts also showed no significant differences
in the mean number of teeth for An. coluzzii (F =
0.63, P = 0.277), Culex (F = 0.58, P = 0.231) and An.
pharoensis (F = 0.57, P = 0.363).

Table 1 Species composition and abundance of mosquitoes collected from the study sites

Total number of mosquito species collected (2015–2016) Total
number of
mosquitoes
collected
(%)

Species identified
molecularlyDistrict (hotspot/

control)
Region Anopheles

gambiae
Anopheles
pharoensis

Anopheles
coustani

Culex
Species

Mansonia
uniformis

Mansonia
africana

Aedes
species

Ahanta West
(hotspot)

Western 18 880 36 4 1221 774 1660 9 22 584 (72.7) Anopheles coluzzii/
Anopheles melas

Mpohor (control) Western 4603 10 3 81 61 19 7 4784 (15.4) Anopheles coluzzii

Kassena Nankana
West (hotspot)

Upper East 1239 4 13 879 9 3 44 2191 (7.1) Anopheles coluzzii/
Anopheles arabiensis

Bongo (control) Upper East 826 4 2 626 3 2 42 1505 (4.9) Anopheles coluzzii/
Anopheles arabiensis

Total 31 064 (100)

Fig. 2 Anopheles gambiae sampled from Western and Upper East regions, Ghana from July 2015 to July 2016
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MDA coverage and baseline (pre-intervention) mf and
antigenaemia prevalence
Analysis of MDA coverage data showed that the treat-
ment coverage for the various years in both Ahanta
West and Mpohor districts were above 65%. However, in
the Upper East region, Kassena Nankana West and
Bongo districts had greater than 65% MDA coverage for
all years indicated except in 2003 for Kassena Nankana
West and 2004/5 for Bongo districts (Fig. 4). By 2016,
Ahanta West, Mpohor, Bongo and Kassena Nankana
West districts had been involved in 16, 11, 13 and 15
rounds of MDA, respectively. However, there were no
MDA data for some of the years (from 2000 to 2014) in
all the districts. Data were absent for Mpohor, Kassena
Nankana West and Bongo districts for 2001. Ahanta

West/Mpohor and Bongo had no data for the years 2002
and 2010, respectively. All districts, however, had no
data for 2007, 2008, 2009, 2011 and 2012.
A retrospective assessment of baseline mf and antigen

prevalence for the various districts showed high baseline
mf and antigenaemia prevalence for all districts, except
Mpohor where zero prevalence was reported for both
mf and antigen. The baseline mf and antigen prevalence
for Ahanta West, Kassena Nankana West and Bongo
districts were 19.5 and 32.8%, 29.4 and 45.3%, 16.7 and
21.2%, respectively (Table 4).

Demographic characteristics
Questionnaires from 438 individuals (229 females, 209
males) were analysed in the four districts from the West-
ern and Upper East regions. The age distribution of the
respondents ranged from 15 to 92 years (mean = 37.4
years; median = 35 years). Half of the respondents were
farmers (n = 220; 50.2%), 62 were fishermen (14.2%),
while 26 were unemployed (5.9%) or involved in other
occupations (n = 130; 29.7%).

MDA compliance
Questionnaire data showed that out of the 110, 108, 108
and 112 respondents from Ahanta West, Mpohor, Kas-
sena Nankana West and Bongo districts, 90.0, 53.7, 87.0

Table 2 The annual biting rates for lymphatic filariasis vectors in
four districts, Ghana

Annual biting rate (ABR) (bites/person/year)

Mosquito
species

Ahanta
West

Mpohor Kassena Nankana
West

Bongo

An. gambiae 15 987 3604 376 306

Mansonia
species

2093 63 9 4

The annual biting rates due to human landing catches for An. gambiae
complex and Mansonia species, vectors for lymphatic filariasis transmission in
four districts from Ghana

Table 3 Mosquito heads from Western and Upper East regions, Ghana cleared and examined for cibarial armature

District (hotspot/control) Mosquito species Mean no. of teeth/SD Median (teeth range) Description of teeth (shape)

Ahanta West (hotspot) An. coluzzii 16.0/ ± 1.0 16 (15–17) Sharp/pointed/long

Culex species 24.3/ ± 2.2 24.5 (21–27) Small/blunt/short

Mansonia species 0.0/ ± 0.0 0 (0) Teeth absent

Aedes species 0.0/ ± 0.0 0 (0) Teeth absent

An. melas 13.3/ ± 0.5 13 (13–14) Sharp/pointed/long

Mpohor (control) An. coluzzii 16.0/ ± 1.7 15 (15–18) Sharp/pointed/long

Culex species 25.2/ ± 1.4 25 (23–27) Small/blunt/short

Mansonia species 0.0/ ± 0.0 0 (0) Teeth absent

Aedes species 0.0/ ± 0.0 0 (0) Teeth absent

Kassena Nankana West (hotspot) An. coluzzii 15.8/ ± 1.8 15 (13–18) Sharp/pointed/long

An. pharoensis 21.3/ ± 1.5 21 (20–23) Pointed/deep-rooted/narrow based

Culex species 26.8/ ± 2.0 26 (25–30) Small/blunt/short

Mansonia species 0.0/ ± 0.0 0 (0) Teeth absent

Aedes species 0.0/ ± 0.0 0 (0) Teeth absent

An. arabiensis 16/ ± 0.0 16 (16) Sharp/pointed/long

Bongo (control) An. coluzzii 15.8/ ± 1.4 15 (14–18) Sharp/pointed/long

An. pharoensis 20.7/ ± 1.2 20 (20–22) Pointed/deep-rooted/narrow based

Culex species 25.8/ ± 2.7 24 (24–30) Small/blunt/short

Mansonia species 0.0/ ± 0.0 0 (0) Teeth absent

Aedes species 0.0/ ± 0.0 (0) Teeth absent

An. arabiensis 16/ ± 0.0 16 (16) Sharp/pointed/long

Pi-Bansa et al. Infectious Diseases of Poverty             (2019) 8:9 Page 6 of 11



and 89.3%, respectively, affirmed their participation in
MDA activities. In relation to MDA compliance, the per-
centages of individuals shown to have complied with the
previous five rounds of MDA were 47.3, 3.7, 31.5 and
9.8% for Ahanta West, Mpohor, Kassena Nankana West
and Bongo districts, respectively. Our results revealed

that relatively high proportion of individuals from Mpo-
hor district did not participate in MDA activities (Fig. 5).

Vector control
Information on vector control activities from respon-
dents in our four study districts indicated that bednet

Fig. 3 Cibarial armatures of mosquitoes from Western and Upper East regions, Ghana, July 2015 to July 2016. a. An. gambiae complex, b. An.
pharoensis, c. Aedes species, d. Culex species and e. Mansonia species. The cibarial armatures of the mosquito species Culex, An. gambiae complex
and An. pharoensis have cibarial teeth present. There are no cibarial teeth present for Aedes and Mansonia species.

Fig. 4 MDA coverage for hotspot and control districts in the Western and Upper East regions, Ghana
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usage and indoor residual spraying were relatively high:
69.1–91.1% for bednet and 38.9–85.5% for indoor re-
sidual spraying.

Discussion
It is estimated that for the interruption of lymphatic filar-
iasis transmission, microfilariae prevalence should be less
than 1% or antigen prevalence less than 2% [18]. These
criteria are used for the roll out of intervention pro-
grammes in all lymphatic filariasis endemic regions. In
Ghana, control of lymphatic filariasis by means of MDA
has been going on for almost two decades. At the time of
the current study in 2016, most endemic communities
should have interrupted transmission and began transmis-
sion assessment survey (TAS) or post-MDA surveillance.
However, there are endemic foci still having transmission
even after several rounds of MDA [10]. Mathematical
model simulations suggest that different countries may
have different mf breakpoints for interruption of lymph-
atic filariasis [8]. Hence, there is a need to have a critical
look at the 1% mf or 2% antigen thresholds used in various
endemic regions for interruption of transmission. The rea-
sons contributing to this persistent transmission are not
clear. Vector species and abundance [17], vector control
activities [31], vector competence, MDA compliance and
therapeutic coverage [12], drug efficacy [32] and possible
vector-parasite combinations [33] are important factors

that govern the transmission of lymphatic filariasis. How-
ever, in any particular situation either all or some of these
factors may be important and need to be understood to
resolve any ongoing transmission.
Results derived from the current study showed that,

with the exception of An. melas, mosquito species com-
position was similar in hotspot and control districts. How-
ever, higher numbers of mosquitoes were obtained from
hotspots, compared to control districts in the same eco-
logical zone. The transmission of lymphatic filariasis is sig-
nificantly influenced by vector density [17]. The consistent
high number of mosquitoes collected from Ahanta West
compared to Mpohor district might be contributing to the
persistence of lymphatic filariasis transmission in Ahanta
West district after several rounds of MDA. Additionally,
on-going lymphatic filariasis transmission in Kassena
Nankana West district might be explained by the relatively
high number of mosquitoes collected in this district, com-
pared to Bongo.
Vector-parasite density dependent relationships of limi-

tation, stable transmission of lymphatic filariasis even at
low mf levels, and facilitation, transmission of lymphatic
even at high mf levels [19, 34], are known to influence
elimination of lymphatic filariasis. Members of the An.
gambiae are generally considered to exhibit facilitation
and hence at low mf levels are not efficient. It is expected
that with An. gambiae serving as major vector, lymphatic

Table 4 Baseline microfilariae and antigenemia prevalence from the Ghana NTD Programme

District (hotspot/control) Baseline mf prevalence (year) Baseline antigen prevalence (year)

Ahanta West (hotspot) 19.5% (2000) 32.8% (2000)

Mpohor (control) 0 (2000) 0 (2000)

Kassena Nankana West (hotspot) 29.4% (2000) 45.3% (2000)

Bongo (control) 16.7% (2004) 21.2% (2004)

Fig. 5 Compliance to last five MDA doses in study districts, Western and Upper East, regions, Ghana
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filariasis should have been eliminated in these districts. An
melas, which is part of the An. gambiae complex, has been
shown to exhibit limitation [11, 19, 35], and hence, able to
pick mf at low parasitaemia and sustain their development
to the infective stage. An. melas observed only in Ahanta
West district might explain why transmission has been
sustained, though at low mf levels.
Additionally, Mansonia species are known to exhibit

limitation [1]. Higher numbers of this species were sam-
pled from Ahanta West than Mpohor District, and very
few in Kassena Nankana West and Bongo districts.
Mansonia species have been incriminated as one of the
vectors involved in lymphatic filariasis transmission in
Ghana [6]. While Mansonia were not examined for W.
bancrofti in this study, its presence in relatively high
numbers in Ahanta West district could also be an add-
itional factor sustaining the transmission of lymphatic
filariasis in this area. Culex mosquitoes had higher num-
bers sampled in Ahanta West compared to Mpohor dis-
trict, while similar numbers were collected in Kassena
Nankana West and Bongo districts. Culex mosquitoes
exhibit limitation [1] and transmit lymphatic filariasis in
East Africa [6]. Appawu et al. [27] showed that Culex
species in Ghana are refractory to W. bancrofti and do
not support their development to the infective stage.
However, studies in Nigeria [36, 37], showed that Culex
transmit lymphatic filariasis.
Cibarial teeth in mosquitoes act as a physical barrier

and influence the transmission dynamics of lymphatic
filariasis. The cibarial teeth number and shape influence
mf intake by inflicting lacerations on ingested parasites
[11, 15]. However, more Mansonia species, lacking
cibarial teeth and competent vectors at low parasitaemia
were collected in Ahanta West. Furthermore, An. melas
with relatively fewer cibarial teeth numbers was found in
Ahanta West, while this species was absent in Mpohor
district. All mosquito species common to Ahanta West,
Mpohor, Kassena Nankana West and Bongo districts
had similar cibarial teeth numbers and shape.
The residual transmission of lymphatic filariasis in an

area may be influenced by differences in the distribution
of vectors [38]. In our study, An. melas was found only
in Ahanta West district. Another factor is the
vector-parasite combinations to lymphatic filariasis in-
fection at low mf prevalence. An. gambiae complex ex-
hibit facilitation but An. melas belonging to this
complex exhibit limitation. This may account for differ-
ences in transmission potential within the An. gambiae
complex [4]. The competence of An. melas to W. ban-
crofti infection at low mf prevalence will contribute to
persistent lymphatic filariasis transmission. As suggested
by our dissection data, the presence of L3 in An. melas
proves its involvement in ongoing transmission of
lymphatic filariasis in Ahanta West district.

Analyses of MDA coverage data obtained from the Na-
tional Neglected Tropical Disease Control Programme
revealed at least 65% MDA coverage for all the districts.
It has been hypothesised that annual MDA with ad-
equate consistent coverage of at least 65% should make
elimination possible [18]. This hypothesis was based on
early models for implementing MDA intervention pro-
grammes without possibly considering spatial heteroge-
neities. Spatial heterogeneities when adopted by
intervention models may give predictions that could ex-
ceed the 5–6 rounds of MDA recommended to interrupt
lymphatic filariasis transmission. This in turn lengthens
the period needed for achieving lymphatic filariasis elim-
ination at a given endemic area. For Ghana, it was pre-
dicted that lymphatic filariasis could be interrupted by
2020 as revealed by mathematical modelling [8]. The au-
thors however suggested that lymphatic filariasis trans-
mission is focal due to a wide range of factors in
endemic areas [8]. This therefore implies that interven-
tion programmes rolled out in endemic areas should be
specific and targeted in each endemic foci.
Community compliance to MDA is important in un-

derstanding persistent transmission of lymphatic filaria-
sis. The evaluation of the districts’ participation in the
previous five rounds of MDA indicated a higher percent-
age of respondents from Ahanta West district (47.3%)
and Kassena Nankana West district (31.5%), reporting to
have taken the drugs all five times, compared to much
lower rates in Mpohor (3.7%) and Bongo (9.8%). Thus
the ongoing transmission of lymphatic filariasis in
Ahanta West may not be due to MDA compliance, but
driven by other factors.
The results from this study indicated higher bednet

usage among community members in control compared
to hotspot districts. This observation may have contrib-
uted to the control of lymphatic filariasis in the control
districts. In Gambia, for example, Rebollo and colleagues
observed that interruption of lymphatic filariasis trans-
mission could have possibly been due to the extensive
national bednet usage for malaria control [31, 39]. It
should be noted that Gambia used bednets without
MDA and at present, there is no explanation on how
lymphatic filariasis was eliminated aside bednet usage.
Indoor residual spraying activities in all districts were
high, except for Mpohor district. AngloGold Ashanti
Malaria Control Ltd., a subsidiary of AngloGold Ashanti
(AGA), from 2013 to 2015 conducted indoor residual
spraying activities twice yearly in about 40 districts in
Ghana. Due to limited resources, indoor residual spray-
ing was done only in districts with high malaria preva-
lence, excluding Mpohor (unpublished data, AGA).
However, it is possible that other private agencies aside
AGA sprayed a few communities in Mpohor, explaining
the low percentage of respondents (38.9%) affirming
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indoor residual spraying activities. While the indoor re-
sidual spraying data in the Western Region may not be
sufficient to draw conclusions, the results from the
Upper East Region on the other hand, indicate that the
lower vector control activities in Kassena Nankana West
compared to Bongo District could be a possible indicator
for control of lymphatic filariasis transmission in control
districts. Thus, supporting the important role vector
control plays in the control of lymphatic filariasis [40].
There were a couple of limitations to this study. First, Mpo-

hor was selected as a control district, although retrospective
analysis of data revealed a zero prevalence at the inception of
MDA in the year 2000. A study site with prevalence similar
to Ahanta West district and with successful MDA treatment
history would have been preferable. Second, the MDA data
collected by the National Neglected Tropical Disease Control
Programme could not be verified. An earlier study has shown
MDA data reported by the programme to be inaccurate [41].
There were also some missing MDA data for some of the
years in all the study districts.

Conclusions
The Global Programme to Eliminate Lymphatic Filariasis
(GPELF) aims at interrupting lymphatic filariasis transmis-
sion. This is based on an estimated duration of 5 years at
1% mf prevalence, which might not be feasible in all en-
demic areas. It is important to understand the local factors
responsible for persistent transmission of lymphatic filaria-
sis in a given area. In our study areas, transmission of
lymphatic filariasis in hotspots despite many years of treat-
ment could not be attributed to low MDA coverage and
compliance when compared to control districts. In Ahanta
West district, our data suggests high biting rates of vector
species in the An. gambiae complex, initial infection preva-
lence rates and low vector control to ongoing lymphatic fil-
ariasis transmission. Additionally, the presence of An.
melas and Mansonia, with less or no cibarial teeth may fur-
ther contribute to transmission. In Kassena Nankana West
district, transmission dynamics could be explained by the
presence of relatively low numbers and biting rates of An.
gambiae complex together with initial infection prevalence
as reported by our study. Furthermore, low densities of
Mansonia and the absence of An. melas may be reasons
why no infections were recorded in this district.
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