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Abstract

Background: Helminths are endemic in more than half of the world’s countries, raising serious public health concerns.
Accurate diagnosis of helminth infection is crucial to control strategies. Traditional parasitological methods, serological
tests and PCR-based assays are the major means of the diagnosis of helminth infection, but they are time-consuming
and/or expensive, and sometimes provide inaccurate results. Loop mediated isothermal amplification (LAMP) assay, a
sensitive, simple and rapid method was therefore developed for detection of helminths. This study aims to discuss the
current status of application of LAMP on helminths detection and to make a comprehensive evaluation about
this updated technology and its future outlook by comparing with several other diagnostic methods.

Main body: This review summarizes LAMP assay applied for helminth detection and helminthiasis surveillance. The
basic principle of LAMP is introduced to help better understand its characteristics and each reported assay is assessed
mainly based on its detection sensitivity, specificity and limitations, in comparison with other common diagnostic tests.
Moreover, we discuss the limitations of the assays so as to clarify some potential ways of improvement.

Conclusions: Here, we summarize and discuss the advantages, disadvantages and promising future of LAMP in
heliminth detection, which is expected to help update current knowledge and future perspectives of LAMP in
highly sensitive and specific diagnosis and surveillance of helminthiasis and other parasitic diseases, and can
contribute to the elimination of the diseases from endemic areas.

Keywords: Loop-mediated isothermal amplification, Helminth, Point-of-care-test, Epidemiological surveillance,
Field survey
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Background
Helminths, including trematodes (flukes), nematodes
(roundworms) and cestodes (tapeworms), are associated
with substantial morbidity and economic losses worldwide
[1–3]. Approximately one-sixth of the worlds’ population
is infected with helminths [4], with an estimated 15 billion

individuals, particularly in low socio-economic regions,
suffered from soil-transmitted helminth (STH) infections
[5, 6]. Although most of helminths have been well investi-
gated epidemiologically [7], actual distributions of them
are still unknown and accurate diagnosis is urgently
needed because of their generally non-specific and similar
symptoms (nausea and/or vomiting, diarrhoea, abdominal
pain, and fever) between the causative species [8, 9].
The approaches to clinical diagnosis and epidemio-

logical surveillance of helminthiasis vary according to the
samples, infectious stages, life cycle, morphological char-
acteristics of helminths. Although the methods are diversi-
fied, there is not an ideal and reliable point-of-care (POC)
diagnostic method that can eminently meet the World
Health Orgnization (WHO)’s expectation of characteris-
tics of affordable, sensitive, specific, user-friendly, rapid
and equipment-delivered (ASSURED) [10, 11]. Though
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the simple and cost-effective morphological identification
of parasites has been commonly employed in clinical diag-
nosis and field survey, it shows poor sensitivity in
low-density parasite infections [12–16]. Furthermore, with
respect to the discernment of parasite eggs that are
morphologically similar, it will lose its specificity [12–16].
In addition, its prerequisite for a considerable quality and
quantity of manpower also makes it unadaptable as a
POC tool [17]. To avoid misdiagnosis and missed
diagnosis, particularly in low-grade infections and in
low-intensity regions, enzyme-linked immunosorbent
assay (ELISA), as a representative of serological tests, has
been applied [18, 19]. However, the major drawbacks with
the use of ELIAS are clear due to its inability to distin-
guish between past and present infections, relatively high
false-positive rate, and cross reactions [16, 19, 20]. Alter-
natively, a series of polymerase chain reaction (PCR)-
based techniques, which are both specific and sensitive,
started a new era for nucleic acid-based molecular detec-
tion of helminths. The 1990s witnessed the inception of
various amplification techniques, e.g., nucleic acid
sequence-based amplification [21], strand displacement
amplification [22], and rolling circle amplification [23].
But none of these methods manages to conquer the inher-
ent weakness of heavy dependence on a particular instru-
ment or elaborate detection methods [24, 25]. As a result,
their application is restricted where they are urgently
needed, such as in primary medical institutions, under-
developed areas and field studies [16, 26, 27]. As LAMP, a
nucleic acid amplification method with extremely high
sensitivity and specificity, appears to promise an appealing
resolution for almost all of issues mentioned above, this
review investigates the recent research progress in use of
LAMP in helminth detection and make an comprehensive
evaluation about this updated technology and highlights
the future perspectives regarding the possible applications
of LAMP in diagnosis of parasitic diseases, comparing
with etiological detection, serological tests and other mo-
lecular assay.
In the present paper, we reviewed published studies

between 2001 and 2018 to identify studies exploiting
LAMP in helminth detection. A comprehensive search
strategy was developed in PubMed, proper key words
and free text terms employed. Search terms were “(hel-
minth” [All fields] OR nematode [All fields] OR cestode
[All fields] OR trematode [All fields]) AND (“loop-me-
diated isothermal amplification” [All fields] OR “LAMP”
[All fields]). In brief, information was collected and ana-
lyzed from 54 articles in Chinese or English.

Main text
Principle of LAMP
Using the sophisticated mechanism of auto-cycling strand
displacement DNA synthesis, LAMP was developed as a

novel method requiring minimal instrumentation [25]. An
inner primer, termed forward inner primer (FIP), contain-
ing sequences corresponding to the sense and antisense
sequences of the target DNA, initiates the reaction [25].
An outer primer primes the subsequent strand displace-
ment DNA synthesis [25]. As a result, a single-stranded
DNA molecule is released, serving as the template for
similar DNA synthesis primed by another set of primers at
the other end of the target DNA [25]. In the initial step,
dumbbell-like DNA strands with a stem-loop structure are
produced (Fig. 1) [25]. In the following cycling step, DNA
synthesis is triggered by an inner primer hybridizing to the
loop on the product, which produces an identical
stem-loop structure [25]. Released by the strand displace-
ment reaction, the 3′ end of the original stem-loop DNA
molecule is able to complete the self-primed DNA synthe-
sis, yielding a new stem-loop DNA molecule with the stem
twice length as the original one [25]. The above reactions
circularly repeat during the entire cycling step (Fig. 2) [25].
Without a thermocycler [28], target DNA is amplified

by employing Bst DNA polymerase under a constant
temperature of 60–65 °C, and accumulated 109 copies of
target DNA in less than an hour, with a detection limit
of a few copies [24, 25, 29]. Properly designed primers
are given [30], as four different primers recognize 6 dis-
tinct sequences in a target DNA. The process will be
blocked once non-specific recognition occurs, hence
high selectiveness [29]. If supplemented with loop
primers, stem primers and swarm primers, an even
higher reaction speed can be expected [31–33]. The final
products of the LAMP reaction are stem-loop DNAs
inverted with a large amount of repeats of the target and
cauliflower-like structures with multiple loops. The ap-
proaches of endpoint monitoring differ according to var-
ied purposes. Sometimes agarose gel electrophoresis is
employed as the gold standard, but it is not always com-
pulsory [25, 34, 35]. And turbidity determination is more
suitable for field research [24]. As a pyrophosphate ion
is released once a nucleotide is added to the DNA
strands, a large number of target DNA will be accumu-
late by the end of the assay, forming visible white precip-
itates of magnesium pyrophosphate, which is used to
determine whether the target nucleic acid was amplified
or not [36]. Based on the principle mentioned above,
LAMP is characteristically able to meet the ASSURED
needs, since it is a one-step process running within 1 h
when there is Bst polymerase and a simple heating
block, and the result can be read by the naked eyes. Fur-
thermore, LAMP has also reported to be more tolerant
than PCR for some biological inhibitors. Therefore, it
can detect DNA in some specific clinical samples, such
as swabs, without DNA extraction [28].
For further improvement, the fluorescent probe calcein,

DNA-binding dye SYBR Green I, DNA-functionalized
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gold nanoparticles, etc., are then added to reach a higher
sensitivity [37, 38]. To achieve the analysis of minute
quantities of nucleic acid, real-time turbidimetry [39] is
used, followed by the introduction of cationic polymers,
e.g., poly-ethylenimine, which makes it feasible for use on
a conventional UV illuminator [40]. Further progress is
based on colorimetry with a hydroxy naphthol blue
(HNB) indicator, which changes colour without affecting
the amplification reactions and can be performed in a mi-
crotiter plate [35, 41], which empowers its development as

a portable tool in field surveys. Combined with several
biotechnology tools, LAMP has been widely applied in
recent years, e.g., LAMP-chromatographic lateral flow
dipsticks [42] and LAMP-ELISA [43, 44]. Moreover, sim-
ultaneous amplification of multiple targets has been
achieved, termed multiplex LAMP (mLAMP), and has
currently attracted much attention in the biomedical
applications [45, 46].
Nevertheless, as disadvantages are always accompanied

by advantages, LAMP assays still have a long way to go

Fig. 1 Principle of LAMP. The initiative stage of LAMP assay: Besides the target DNA, the reaction system in (a) contains a set of inner primers—BIP
and FIP, and a set of outer primers –F3 and B3 primer. An inner primer initiates the reaction in (b-g) by replacing the template strand with the help
of polymerase with strand-displacement activity such as Bst DNA polymerase. An outer primer working, a single strand DNA is released, serving as the
template of the following reaction. The similar strand-displacing DNA synthesis proceeding in the other end, yields the dumbbell-like DNA strands
with a stem-loop structure in (g), which take part in the auto-cycling stage
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until their robustness, performance and utility are vali-
dated [47]. As mentioned above, primer design is a pre-
requisite and critical part of the LAMP assay [48], but it is
also a major drawback plaguing researchers, even helpful
software can be freely acquired [49–51]. The introduction
of multiple primers theoretically promotes specificity,
whereas it may increase the risk of primer-primer hybrid-
izations, giving rise to template-free amplification at the
same time [52]. The chances of false-positive outcomes,
however, need further evaluation [45]. To avoid the fore-
going situation, redesign of the primers should be taken
into consideration [45]. Another chief obstacle is the unin-
tended carryover contamination caused by its extremely
high efficacy [48, 53, 54]. An isolated room and a closed
reaction system for the test, e.g., agar dye capsule [55], or
the pre-addition of dye, hydroxynaphthol blue dye (HNB),
are recommended [45]. Another prominent resolution is
the emerging lab-on-chip technique, which allows all the
analytical steps to be processed on a single chip [56, 57].

Due to the lack of a thermocycler and convenience in
sample extraction and endpoint determination, LAMP
may prompt the development of lab-on-chip techniques
[58, 59]. In combination with LAMP, mLAMP will mani-
fest notable superiority of high-throughput screening, high
sensitivity and lower risk of cross-contamination, which
shows momentum in multiple target screening and deter-
mination of pathogens with frequent gene mutation [46].

Detection of helminths by LAMP
The impressive progress currently made in the LAMP
assay for helminths includes trematodes of Clonorchis
sinensis [12, 26, 60], Opisthorchis viverrini [14, 61, 62],
Amphimerus spp. [63, 64], Paragonimus westermani
[15], Fasciola hepatica [65–67], F. gigantica [65], Schisto-
soma japonicum [16, 27, 68–70], S. mansoni [13, 71–77],
S. haematobium [51, 71, 72, 76]; nematodes of Necator
americanus [78, 79], Ascaris lumbricoides [17, 79], Tri-
churis trichiura [79], Toxocara canis [80] and T. cati

Fig. 2 Principles of LAMP assay. The auto-cycling stage: After the self-hybridizing reaction dissociate the stem-loop structure in the 5′ end, an inner
primer hybridized to the stem-loop in the 3′ end, initiating the auto-cycling stage. The newly synthesized 3′ end continues its self-hybridizing reaction,
producing a stem-loop DNA essentially identical with the initial one and a new one with the stem twice as the original one. Inner primers hybridizes,
elongating new strands once there is a stem free thus to repeat the aforementioned reaction. The final products in (g), namely stem-loop DNAs of
varied sizes and cauliflower-like structures with multiple loops, accumulates as long as the reaction circularly continues
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[81], Strongyloides stercoralis [52, 82], Onchocerca volvu-
lus [83–86], Wuchereria bancrofti [86, 87], Brugia
malayi [86, 88], B. tomori [88], Loa loa [89–91], Dirofi-
laria repens [92], Angiostrongylus cantonensis [93, 94],
Trichinella spiralis [95, 96], Bursaphelenchus xylophilus
[97], and Haemonchus contortus [98, 99]; cestodes of T.
solium [44, 100–103], T. saginata [44, 100–103], T. asia-
tica [44, 100–103], T. hydatigena [104], T. multiceps
[104], T. pisiformis [104] and T. crassiceps [104], Echino-
coccus granulosus [104–106], E. multilocularis [104,
107], E. equinus [108], E. canadensis [108], E. felidi
[108], E. ortleppi [108, 109] and E. shiquicus [104], have
been covered in this review for further insight into its
adoption for clinical diagnosis, field surveys and surveil-
lance of helminths. The sensitivity and specificity of de-
tection of helminths by LAMP are shown in Table 1.

Detection of trematodes by LAMP
Foodborne trematode infections remain a serious global
health burden, resulting in 2 million disability-adjusted
life years lost annually [110, 111].
Clonorchiasis and opisthorchiasis, being mainly preva-

lent in Asia and Europe, are characterised by significant
pathological hepatobiliary changes caused by C. sinensis,
O. viverrini and O. felineus [110, 112]. Both C. sinensis
and O. viverrini, classified as class one carcinogens of
human cholangiocarcinoma by the International Agency
for Research on Cancer, are cancerogenic after years of
infestation in bile ducts of the host [112, 113]. As devel-
oped as biotechnology tools are, microscopic egg count-
ing in stool samples continues to be the routine method
of diagnosis, which is simple but lacks sensitivity in early
and light infections [112, 114, 115]. How to accurately
differentiate between liver flukes and intestinal flukes in
areas where they coexist remains an unsolved problem
[116]. In endemic areas where residents become infected
by consuming raw fish with metacercariae, the epi-
demiological investigation of C. sinensis infection in
freshwater fish is an important part of clonorchiasis
supervision. The current epidemiological method in fish
partly depends on the labour-intensive microscopic in-
spection of fish muscle, which may lead to missed detec-
tion of low worm burden or cross-border contamination
[117, 118]. Hence, LAMP, as an innovative technique
that is sensitive and convenient, will help to solve these
problems. The LAMP assay has been devised to detect
DNA of C. sinensis and O. viverrini in freshwater snails
[12], the second intermediate fish hosts [14, 60, 61] and
patient faeces [26, 61, 62].
In the detection of C. sinensis infection in fish, the

respective detection limit of LAMP and PCR were
10− 8 ng/μL and 10− 6 ng/μL, respectively, demonstrating
that LAMP was 100-fold more sensitive than PCR [60].
When the true positive and negative results of LAMP

were in 100% agreement with the conventional micro-
scopic examination, this approach shows the potential to
replace the conventional method in the investigation of
fluke invasion in the fish industry [14, 60, 61]. In addition,
LAMP is sensitive enough to examine up to 0.0002 cer-
cariae in a snail, and it is promising to be a prominent fig-
ure in epidemiological surveillance for snail control
intervention [12]. In human faecal samples, LAMP-based
technology was established to detect C. sinensis with infec-
tion intensity as low as 1 egg per 100mg. Further evalu-
ation of the LAMP-based diagnosis test showed a
sensitivity of 97.1% and specificity of 100% as confirmed
by the Kato-Katz (KK) method as well as real-time PCR
(RT-PCR) [26]. However, it also perceived five additional
positive samples of 13 microscopically negative samples in
O. viverrini determination [61]. Future studies are expected
to assess the valid detection limit of this method in com-
parison with the KK method and RT-PCR as well as its
feasibility as a routine standard method [26]. Similar LAMP
assays were also developed in O. viverrini, with the vari-
ation of sensitivity and specificity relating to the repetition
of different target genes when detecting copro-DNA [14,
61, 62]. For example, LAMP is highly sensitive when target-
ing internal transcribed spacer 1 (ITS1) of O. viverrini, but
specificity cannot be guaranteed for ITS1 cross-amplifying
genes from O. felineus, F. gigantica and Haplorchoihoides
spp. [61, 62]. When amplifying the mitochondrial gene
nad1 of O. viverrini in 100% specificity, the sensitivity for
LAMP was between 1 petagram (pg) and 100 femtograms
(fg), whereas it was 10 pg for PCR [62].
Amphimeriasis, caused by Amphimerus spp., has been

recently reported as an emerging zoonotic fish-borne tre-
matodisasis affecting indigenous inhabitants and domestic
animals in the tropical Pacific side of Ecuador [119]. To
date, a novel LAMP assay (namely LAMPhimerus) is de-
vised for the first time to detect internal transcribed spa-
cer 2 (ITS2) of Amphimerus spp. DNA in patient faecal
samples, with detection limit (1 pg) identical to conven-
tional PCR [63]. LAMPhimerus was more sensitive than
traditional parasitological techniques, including direct mi-
croscopy detection, formalin-ether concentration, simple
sedimentation technique, Kato-Katz technique, fecal egg
count [63]. Of 44 human stool samples, the LAMPhi-
merus method achieved 76.67% sensitivity; 80.77% specifi-
city; 82.14% positive predict value (PPV) and 75.00%
negative predict value (NPV) [63]. As the current scarce
genomic information of Amphimerus spp. is scarce, fur-
ther enhancement of the assay could be based on the ex-
ploitation of different DNA target [63]. The procedure, in
combination with the air-dried faecal specimens on com-
mon filter paper as source of DNA, is superior in feasible
collection, long-term preservation and transportation, and
potentially applicable as an effective diagnostic or epi-
demiological tool in amphimeriasis-endemic regions [64].

Deng et al. Infectious Diseases of Poverty            (2019) 8:20 Page 5 of 22



Ta
b
le

1
Th
e
ov
er
al
li
nf
or
m
at
io
n
of

LA
M
P
as
sa
ys

fo
r
he

lm
in
th
s

Pa
ra
si
te
s

D
ev
el
op

m
en

ta
l

St
ag
es

Sa
m
pl
es

H
os
ts

Ta
rg
et

ge
ne

A
cc
es
si
on

nu
m
be

r
Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

Re
fe
re
nc
e

(D
et
ec
tio

n
Li
m
it)

Tr
em

at
od

es

C.
sin

en
sis

A
du

lt
Bi
le
du

ct
C
at

C
at
he

ps
in

B3
A
Y2
73
80
3

0.
01

ng
of

D
N
A
/r
xn

10
0%

[6
0]

M
et
ac
er
ca
ria

M
us
cl
e

Fi
sh

9
m
et
ac
er
ca
ria
s/
gr
am

Sp
or
oc
ys
t,
re
di
a,

ce
rc
ar
ia

Ti
ss
ue

Sn
ai
l,
sh
rim

p,
fis
h

IT
S-
2

A
F2
17
09
9

10
fg

of
D
N
A
/r
xn

10
0%

[1
2]

(0
.0
00
2
C.

sin
en
sis

pe
r
sn
ai
l)

A
du

lt
Bi
le
du

ct
Ra
t

C
ox
1

A
F1
81
88
9

10
0
fg

of
D
N
A
/r
xn

10
0%

[2
6]

Eg
g

St
oo

l
H
um

an
10

EP
G
s

F.
he
pa
tic
a

A
du

lt
–

Ca
ttl
e,
go

at
,r
ab
bi
t,

sh
ee
p,
ho

rs
e

IG
S

G
U
90
38
90

10
fg

of
D
N
A
/r
xn

10
0%

[6
5]

Eg
g

St
oo

l
Sh
ee
p

IT
S-
2

JF
70
80
43

1
pg

of
D
N
A
/r
xn

10
0%

[6
6]

G
Q
23
15
47

JF
70
80
26

JF
70
80
36

H
M
74
67
86

A
M
70
96
22

JF
43
20
71

JF
43
20
74

JF
49
67
14

KF
42
53
21

A
M
85
01
08

H
M
74
67
88

JN
82
89
56

Eg
g

St
oo

l
Sh
ee
p
an
d
ca
tt
le

IT
S-
2

D
Q
68
35
46
,J
F8
24
66
8,

KJ
20
06
22
,A

B2
07
14
8

1
pg

of
D
N
A
/r
xn

10
0%

[6
7]

F.
gi
ga
nt
ic
a

A
du

lt,
eg

g
an
d

ce
rc
ar
ia

–
C
at
tle
,s
he

ep
,

bu
ffa
lo

an
d
sn
ai
l

IG
S

G
U
90
38
91

0.
01

pg
of

D
N
A
/r
xn

10
0%

[6
5]

O
.v
iv
er
rin
i

A
du

lt
Bi
le
du

ct
H
am

st
er

IT
S-
1

EU
03
81
51

1
pg

of
D
N
A
/r
xn

10
0%

[6
1]

C
er
ca
ria

Ti
ss
ue

Sn
ai
l

–
10
0%

M
et
ac
er
ca
ria

M
us
cl
e

Fi
sh

–
10
0%

A
du

lt
Bi
le
du

ct
H
am

st
er

–
C
ro
ss

re
ac
tio

n
w
ith

O
.f
el
in
eu
s,

F.
gi
ga
nt
ic
a
an
d
H
ap
lo
rc
ho

ih
oi
de
s

sp
.,
no

te
m
pl
at
e-
fre

e
am

pl
ifi
ca
tio

n

[1
4]

Eg
g,

A
du

lt
an
d

m
et
ac
er
ca
ria

St
oo

l
H
um

an
N
ad
1

EU
44
38
31
,D

Q
88
21
72
,

D
Q
88
21
74
,E
U
44
38
33
,

1
pg

to
10
0
fg

of
D
N
A
/r
xn

10
0%

[6
2]

Deng et al. Infectious Diseases of Poverty            (2019) 8:20 Page 6 of 22



Ta
b
le

1
Th
e
ov
er
al
li
nf
or
m
at
io
n
of

LA
M
P
as
sa
ys

fo
r
he

lm
in
th
s
(C
on

tin
ue
d)

Pa
ra
si
te
s

D
ev
el
op

m
en

ta
l

St
ag
es

Sa
m
pl
es

H
os
ts

Ta
rg
et

ge
ne

A
cc
es
si
on

nu
m
be

r
Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

Re
fe
re
nc
e

(D
et
ec
tio

n
Li
m
it)

EU
44
38
32
,D

Q
88
21
75
,

G
Q
40
10
25
,G

Q
40
10
64
,

G
Q
40
10
46
,G

Q
40
10
60
,

G
Q
40
10
82
,G

Q
40
10
96
,

EU
02
23
43
,E
U
02
23
46
,

EU
02
23
48
,E
U
02
23
50

M
et
ac
er
ca
ria

an
d

m
et
ac
er
ca
ria
lc
ys
t

M
us
cl
e

Fi
sh

–
10
0%

Eg
g

St
oo

l
H
um

an
–

10
0%

A
du

lt
Bi
le
du

ct
H
am

st
er

O
vM

S6
D
Q
14
40
69

1
pg

of
D
N
A
/r
xn

10
0%

[1
4]

Am
ph

im
er
us

sp
p.

A
du

lt
Li
ve
r

C
at
s
an
d
do

gs
IT
S-
2

A
B6
78
44
2.
1

1
pg

of
D
N
A
/r
xn

10
0%

[6
4]

Eg
g

St
oo

l
H
um

an
–

–

P.
w
es
te
rm

an
i

M
et
ac
er
ca
ria

M
us
cl
e

Fr
es
hw

at
er

cr
ab

an
d
cr
ay
fis
h

IT
S-
2

A
F1
59
60
4

0.
01

fg
of

D
N
A
/r
xn

10
0%

[1
5]

1
m
et
ac
er
ca
ria
/g
ra
m

Eg
g

Sp
ut
um

an
d

pl
eu
ra
lf
lu
id

H
um

an
–

10
0%

S.
ja
po
ni
cu
m

A
du

lt,
eg

g,
ce
rc
ar
ia

Li
ve
r
ho

m
og

en
at
e,

st
oo

la
nd

se
ru
m

Ra
bb

it
Sj
R2

A
F4
12
22
1

0.
08

fg
of

D
N
A
/r
xn

10
0%

[1
6]

Sj
R2

A
Y0
27
86
9

–
Se
ru
m

Ra
bb

it
po

si
tiv
e
fro

m
1
w
ee
k
p.
i.

w
ith

50
0
ce
rc
ar
ia
e

–

A
du

lt
–

–
10
0
fg

of
D
N
A
/r
xn

C
ro
ss

re
ac
tio

n
w
ith

Sc
h.
m
an

so
ni
;

no
te
m
pl
at
e-
fre

e
am

pl
ifi
ca
tio

n
[6
9]

–
Se
ru
m

Ra
bb

it
po

si
tiv
e
fro

m
1
w
ee
k
p.
i.

w
ith

20
0
ce
rc
ar
ia
e

–

–
Se
ru
m

Ra
bb

it
Sj
R2

A
F4
12
22
1

po
si
tiv
e
fro

m
3
da
ys

p.
i.

w
ith

30
ce
rc
ar
ia
e

–
[7
0]

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

28
S
rD
N
A

Z4
65
04

10
0
fg

of
D
N
A
/r
xn

10
0%

[6
8]

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

po
sit
iv
e
fro

m
1
da
y
p.
iw

ith
1
m
ira
ci
di
um

–

1
in
fe
ct
ed

sn
ai
li
n
10
0
no

n-
in
fe
ct
ed

sn
ai
ls

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

10
0
fg

of
D
N
A
/r
xn

10
0%

[2
7]

S.
m
an

so
ni

A
du

lt
–

M
ou

se
Sm

1–
7

M
36
08
6

0.
1
fg

of
D
N
A
/r
xn

10
0%

[7
1]

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

po
sit
iv
e
fro

m
1
da
y
p.
i.
w
ith

10
m
ira
ci
di
a

–

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

po
si
tiv
e
fro

m
1
da
y
p.
i.

w
ith

1
m
ira
ci
di
um

–
[7
2]

–
Pl
as
m
a/
Se
ru
m

M
ou

se
0.
5
fg

of
D
N
A
/r
xn

10
0%

[7
4]

po
si
tiv
e
fro

m
1
w
ee
k
p.
i.

w
ith

20
0
ce
rc
ar
ia
e

Deng et al. Infectious Diseases of Poverty            (2019) 8:20 Page 7 of 22



Ta
b
le

1
Th
e
ov
er
al
li
nf
or
m
at
io
n
of

LA
M
P
as
sa
ys

fo
r
he

lm
in
th
s
(C
on

tin
ue
d)

Pa
ra
si
te
s

D
ev
el
op

m
en

ta
l

St
ag
es

Sa
m
pl
es

H
os
ts

Ta
rg
et

ge
ne

A
cc
es
si
on

nu
m
be

r
Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

Re
fe
re
nc
e

(D
et
ec
tio

n
Li
m
it)

A
du

lt
–

–
M
in
is
at
el
lit
e

D
N
A
re
gi
on

L2
72
40

1
fg

of
D
N
A
/r
xn

10
0%

[7
3]

–
St
oo

l
M
ou

se
po

si
tiv
e
fro

m
1
w
ee
k
p.
i.

w
ith

20
0
ce
rc
ar
ia
e.

10
0%

A
du

lt
–

–
IG
S

A
J2
23
84
2

0.
1
fg

of
D
N
A
/r
xn

10
0%

[7
5]

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

po
si
tiv
e
fro

m
1
da
y
p.
i.

w
ith

1
m
ira
ci
di
um

10
0%

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

Sm
IT
S

L2
72
40
.1
,A

Y4
46
08
2.
1,

M
63
26
5.
1,
A
F1
30
78
7.
1

70
fg

of
D
N
A
/r
xn

10
0%

[1
3]

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

1
in
fe
ct
ed

sn
ai
li
n
10
00

no
n-
in
fe
ct
ed

sn
ai
ls

10
0%

S.
ha

em
at
ob
iu
m

A
du

lt
–

–
D
ra
I

–
0.
1
fg

of
D
N
A
/r
xn

10
0%

[7
1]

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

po
si
tiv
e
fro

m
1
da
y
p.
i.

w
ith

5
m
ira
ci
di
a

10
0%

M
ira
ci
di
um

Ti
ss
ue

Sn
ai
l

po
si
tiv
e
fro

m
1
da
y
p.
i.

w
ith

1
m
ira
ci
di
um

10
0%

[7
2]

A
du

lt
–

–
18
S–
28
S

rD
N
A

A
J2
23
83
8

10
0
fg

of
D
N
A
/r
xn

10
0%

[7
6]

Eg
g

U
rin

e
H
um

an
25

fg
of

D
N
A
/r
xn

10
0%

N
em

at
od

es

A.
lu
m
br
ic
oi
de
s

Eg
g
an
d
ad
ul
t

St
oo

l
H
um

an
IT
S-
1

A
J0
00
89
5

10
.8
ng

of
D
N
A
/r
xn

10
0%

[1
7]

A
du

lt
St
oo

l
H
um

an
β-
tu
bu

lin
is
ot
yp
e
1

ge
ne

EU
81
46
97

1
pg

of
D
N
A
/r
xn

10
0%

[7
9]

N
.a
m
er
ic
an

us
Eg
g

St
oo

l
H
um

an
IT
S-
2

KC
89
68
20
.1
-K
C
89
68
25
.1
,

Y1
17
34
,

A
F2
17
89
1,

H
Q
45
25
15
,

H
Q
45
52
17
,

H
Q
45
25
37
-H
Q
45
25
43
,

A
J0
01
59
9

0.
4
fg

of
D
N
A
/r
xn

10
0%

[7
8]

A
du

lt,
la
rv
a
an
d

eg
g

St
oo

l
H
um

an
β-
tu
bu

lin
is
ot
yp
e
1

ge
ne

EF
39
28
51

1
pg

of
D
N
A
/r
xn

10
0%

[7
9]

T.
tr
ic
hi
ur
a

A
du

lt
–

–
β-
tu
bu

lin
is
ot
yp
e
1

ge
ne

A
F0
34
21
9

1
pg

of
D
N
A
/r
xn

10
0%

[7
9]

W
.b
an

cr
of
ti

M
ic
ro
fil
ar
ia

Bl
oo

d
H
um

an
W
bL
D
R

A
Y2
97
45
8

0.
00
1
m
ic
ro
fil
ar
ia
e/
rx
n

10
0%

[8
7 ]

–
–

–
0.
00
00
2
m
ic
ro
fil
ar
ia
/r
xn

10
0%

[8
6]

Br
ug
ia
n
sp
p.

–
–

–
H
ha

I
M
12
69
1,

A
A
Q
A
01
02
56
53
,

1.
0
pg

of
D
N
A
/r
xn

Te
st
ed

po
si
tiv
e
fo
r
bo

th
B.
m
al
ay
i

an
d
B.
tim

or
i

[8
8]

Deng et al. Infectious Diseases of Poverty            (2019) 8:20 Page 8 of 22



Ta
b
le

1
Th
e
ov
er
al
li
nf
or
m
at
io
n
of

LA
M
P
as
sa
ys

fo
r
he

lm
in
th
s
(C
on

tin
ue
d)

Pa
ra
si
te
s

D
ev
el
op

m
en

ta
l

St
ag
es

Sa
m
pl
es

H
os
ts

Ta
rg
et

ge
ne

A
cc
es
si
on

nu
m
be

r
Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

Re
fe
re
nc
e

(D
et
ec
tio

n
Li
m
it)

A
A
Q
A
01
02
61
45
,

A
A
Q
A
01
01
88
78
,

A
A
Q
A
01
01
19
54
,

A
A
Q
A
01
02
10
48
,

A
A
Q
A
01
00
53
86
,

A
A
Q
A
01
00
57
90
,

A
A
Q
A
01
00
72
77
,

A
A
Q
A
01
00
47
14
,

A
A
Q
A
01
00
51
24
,

M
ic
ro
fil
ar
ia

Bl
oo

d
Fe
lin
e

0.
00
5
m
ic
ro
fil
ar
ia
e/
rx
n

–

B.
m
al
ay
i

–
–

–
1.
0
pg

of
D
N
A
/r
xn

10
0%

[8
6]

O
.v
ol
vu
lu
s

A
du

lt
Sk
in

no
du

le
H
um

an
O
vG

ST
1a

A
F2
65
55
6.
1

0.
01

ng
of

D
N
A
/r
xn

10
0%

[8
3]

Bl
ac
k
fiy

0.
01

ng
of

D
N
A
/2
00

in
se
ct
s

–

–
–

–
0.
01

ng
of

D
N
A
/r
xn

10
0%

[8
6]

M
ic
ro
fil
ar
ia

Sk
in

sn
ip

H
um

an
O
-1
50

J0
46
59

0.
1
pg

of
D
N
A
/r
xn

10
0%

[8
4]

C
ox
1

N
C
_0
01
86
1.
1

10
0
D
N
A
co
pi
es
/r
xn

C
ro
ss

re
ac
tio

n
w
ith

O
hc
h.
oc
he
ng

i
[8
5]

Lo
a
lo
a

M
ic
ro
fil
ar
ia

Bl
oo

d
H
um

an
LL
M
F7
2

H
M
75
35
52
.1

0.
2
fg

of
D
N
A
/r
xn

93
.0
0%

[8
9]

LL
M
F3
42

A
D
BU

02
00
04
98
.1

0.
02

pg
of

D
N
A
/r
xn

(q
PC

R
as

go
ld

st
an
da
rd
)

A
du

lt
Ey
es

an
d
Bl
oo

d
H
um

an
LL
3M

9
M
34
25
9.
1

0.
5
ag

of
D
N
A
/r
xn

10
0%

[9
0]

–
–

–
RF
4

JP
EI
01
00
12
37
.1

JP
EI
01
00
15
54
.1

JP
EI
01
00
12
18
.1

JP
EI
01
00
15
88
.1

JP
EI
01
00
17
06
.1

0.
12
6
pg

of
D
N
A
/r
xn

10
0%

[9
1]

–
Bl
oo

d
H
um

an
1.
6
pg

of
D
N
A
/r
xn

Po
si
tiv
e
in

on
ly
1
of

12
N
TC

s

D
.r
ep
en
s

La
rv
a

Bl
oo

d
D
og

C
O
Ig

en
e

A
J2
71
61
4,

A
M
74
92
30
-

A
M
74
92
34
,

D
Q
35
88
14
,

JF
46
14
58
,

KF
69
21
02

0.
15

fg
of

D
N
A
/r
xn

by
re
al

tim
e-
LA

M
P,
an
d
10

fg
of

D
N
A
/r
xn

by
PI
-L
A
M
P

10
0%

[9
2]

S.
St
er
co
ra
lis
(S
.r
at
ti

or
S.
ve
ne
zu
el
en
sis

as
la
bo

ra
to
ry

m
od

el
)

In
fe
ct
iv
e
th
ird

st
ag
e

la
rv
a

St
oo

l
H
um

an
28
S
rR
N
A

ge
ne

D
Q
14
57
0.
1

<
10

co
pi
es

of
D
N
A
/r
xn

<
0.
01

of
a
la
rv
a/
rx
n

10
0%

[5
2]

In
fe
ct
iv
e
th
ird

st
ag
e

la
rv
a

St
oo

l
W
is
ta
r
ra
ts

18
S
rR
N
A

ge
ne

A
J4
17
02
6.
1

Po
si
tiv
e
fro

m
6
da
ys

p.
i.

w
ith

40
iL
3,
fro

m
5
da
ys

p.
i.
w
ith

40
0
iL
3
or

40
00

iL
3

10
0%

[8
2]

ur
in
e

Po
si
tiv
e
fro

m
6
da
ys

p.
i.

w
ith

40
iL
3,
fro

m
3
da
ys

p.
i.

w
ith

40
0
iL
3
or

40
00

iL
3

10
0%

A.
ca
nt
on

en
sis

Th
e
fir
st
st
ag
e
la
rv
a

Lu
ng

sn
ai
l

18
S
rR
N
A

ge
ne

A
Y2
95
80
4.
1

1
fg

of
D
N
A
/r
xn

10
0%

[9
3]

Th
e
th
ird

st
ag
e

la
rv
a

Ti
ss
ue

sn
ai
l

IT
S-
1

G
U
58
77
60
.1

0.
32

la
rv
ae
/0
.1
g
of

sn
ai
l

tis
su
e

–
[9
4]

Deng et al. Infectious Diseases of Poverty            (2019) 8:20 Page 9 of 22



Ta
b
le

1
Th
e
ov
er
al
li
nf
or
m
at
io
n
of

LA
M
P
as
sa
ys

fo
r
he

lm
in
th
s
(C
on

tin
ue
d)

Pa
ra
si
te
s

D
ev
el
op

m
en

ta
l

St
ag
es

Sa
m
pl
es

H
os
ts

Ta
rg
et

ge
ne

A
cc
es
si
on

nu
m
be

r
Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

Re
fe
re
nc
e

(D
et
ec
tio

n
Li
m
it)

A
du

lt
Ti
ss
ue

sn
ai
l

0.
01

ng
of

D
N
A
/r
xn

10
0%

T.
sp
ira
lis

La
rv
a

M
us
cl
e

M
ic
e

Re
pe

tit
iv
e

D
N
A

X0
66
25

0.
72
4
fg

of
D
N
A
/r
xn

C
ro
ss

re
ac
tio

n
w
ith

po
si
tiv
e

co
nt
ro
ls
,i
nc
lu
di
ng

Tr
i.
na

tiv
a,
Tr
i.

ps
eu
do
sp
ira
lis

an
d
Tr
i.
ne
lso

ni
,n
o

cr
os
s
re
ac
tio

n
w
ith

he
te
ro
lo
go

us
sp
ec
ie
s,
no

te
m
pl
at
e-
fre

e
am

pl
ifi
ca
tio

n

[9
5]

0.
00
2
la
rv
ae
/r
xn

0.
01

la
rv
ae
/g

of
m
us
cl
e

tis
su
e

m
t-
ls
rD
N
A

G
U
33
91
48
.1

0.
1
pg

/r
xn

10
0%

[9
6]

T.
ca
ni
s

Eg
g

–
–

IT
S-
2

A
J0
02
44
0,

0.
1
pg

of
D
N
A
/r
xn

10
0%

[8
1]

Eg
g

Sa
nd

–
3
eg

gs
/1
0
g
of

sa
nd

A
du

lt
St
oo

l
D
og

0.
1
pg

of
D
N
A
/r
xn

10
0%

[8
0]

3
eg

gs
/3
0
g
of

st
oo

ls

T.
ca
tt
i

Eg
g

Sa
nd

–
IT
S-
2

A
J0
02
44
1

0.
1
pg

/r
xn

10
0%

[8
1]

B.
xy
lo
ph

ilu
s

–
–

–
IT
S

A
B5
00
14
6-

A
B5
00
15
6

(a
cc
es
se
d
in

D
D
BJ
)

10
co
pi
es

of
D
N
A
/r
xn

10
0%

[9
7]

–
W
oo

d
–

2.
5
×
10
^
(−
5)

of
a

ne
m
at
od

e/
rx
n

–

H
.c
on

to
rt
us

Eg
g

St
oo

l
Sh
ee
p

IT
S-
1

–
5
pg

of
D
N
A
/r
xn

10
0%

[9
8]

A
du

lt
–

G
oa
t

IT
S-
2

X7
88
03
.1

1
pg

of
D
N
A
/r
xn

10
0%

[9
9]

C
es
to
de

s

T.
so
liu
m

Pr
og

lo
tt
id

an
d

cy
st
ic
er
cu
s

C
ys
t
flu
id

M
ou

se
C
ox
1

A
B0
86
25
6

–
10
0%

[1
00
]

Pr
og

lo
tt
id

an
d

cy
st
ic
er
cu
s

C
ys
t
flu
id

M
ou

se
C
lp

A
B4
41
81
5

1
co
py

of
D
N
A
/r
xn

10
0%

T.
sa
gi
na

ta
Pr
og

lo
tt
id

an
d

cy
st
ic
er
cu
s

C
ys
t
flu
id

M
ou

se
C
ox
1

A
Y6
84
27
4

–
10
0%

[1
00
]

Eg
g

St
oo

l
H
um

an
5
EP
G

10
0%

Pr
og

lo
tt
id

an
d

cy
st
ic
er
cu
s

C
ys
t
flu
id

M
ou

se
C
lp

A
B4
41
81
6

1
co
py

of
D
N
A
/r
xn

10
0%

Eg
g

St
oo

l
H
um

an
m
or
e
th
an

10
EP
G

97
.4
%
(c
on

fir
m
ed

by
m
ul
tip

le
x
PC

R
w
ith

C
ox
1
ge

ne
s)

T.
as
ia
tic
a

Pr
og

lo
tt
id

an
d

cy
st
ic
er
cu
s

C
ys
t
flu
id

M
ou

se
C
ox
1

A
F4
45
79
8

–
10
0%

[1
00
]

Eg
g

St
oo

l
H
um

an
5
EP
G

10
0%

E.
gr
an

ul
os
us

Pr
ot
os
co
le
x

Li
ve
r

Sh
ee
p

Re
pe

at
re
gi
on

se
qu

en
ce

D
Q
15
76
97

10
0
fg

D
N
A
/2
00

μl
10
0%

[1
05
]

Eg
g

St
oo

l
D
og

1
pg

/2
00

m
g
fe
ce
s

–

5
EP
G

Deng et al. Infectious Diseases of Poverty            (2019) 8:20 Page 10 of 22



Ta
b
le

1
Th
e
ov
er
al
li
nf
or
m
at
io
n
of

LA
M
P
as
sa
ys

fo
r
he

lm
in
th
s
(C
on

tin
ue
d)

Pa
ra
si
te
s

D
ev
el
op

m
en

ta
l

St
ag
es

Sa
m
pl
es

H
os
ts

Ta
rg
et

ge
ne

A
cc
es
si
on

nu
m
be

r
Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

Re
fe
re
nc
e

(D
et
ec
tio

n
Li
m
it)

Eg
g

St
oo

l
D
og

N
ad
5

A
F2
97
61
7

1
pg

of
D
N
A
/r
xn

10
0%

[1
06
]

Eg
g

St
oo

l
D
og

po
si
tiv
e
fro

m
22

da
ys

p.
i.

w
ith

10
00
0
pr
ot
os
co
le
ce
s

–

Eg
g
an
d
la
rv
a

St
oo

l
D
og

10
pg

of
D
N
A
/r
xn

10
0%

[1
04
]

E.
gr
an

ul
os
us

se
ns
u

st
ric
to

Pr
ot
os
co
le
x

–
–

N
ad
1

A
F2
97
61
7

1/
10

or
1/
50

of
on

e
pr
os
co
le
x

E.
gr
an

ul
os
us

G
1,
E.
gr
an

ul
os
us

G
3

po
si
tiv
e;

[1
08
]

10
0%

E.
eq
ui
nu

s
Pr
ot
os
co
le
x

–
–

N
ad
1

A
F3
46
40
3

1/
10

or
1/
50

of
on

e
pr
os
co
le
x

10
0%

[1
08
]

E.
Ca

na
de
ns
is

Pr
ot
os
co
le
x

–
–

N
ad
1

A
B2
08
06
3

1/
10

or
1/
50

of
on

e
pr
os
co
le
x

E.
Ca

na
de
ns
is
G
6,
E.
Ca

na
de
ns
is
G
7,

E.
Ca

na
de
ns
is
G
8,
E.
Ca

na
de
ns
is

G
10

po
si
tiv
e;

[1
08
]

10
0%

E.
fe
lid
i

Eg
g

–
–

N
ad
1

EF
55
83
57

1/
10

an
d
1/
50

eg
g

10
0%

[1
05
]

E.
or
tle
pp
i

Pr
ot
os
co
le
x

–
–

N
ad
1

A
B2
35
84
6

1/
10

or
1/
50

of
on

e
pr
os
co
le
x

10
0%

[1
05
]

Pr
ot
os
co
le
x
an
d

as
so
ci
at
ed

ge
rm

in
al

la
ye
r

H
yd
at
id

cy
st

C
am

el
an
d

hu
m
an

N
ad
1

JN
63
71
77

10
pg

of
D
N
A
/r
xn

10
0%

[1
09
]

E.
m
ul
til
oc
ul
ar
is

Pr
ot
os
co
le
x

M
ul
til
oc
ul
ar

cy
st
ic

m
as
se
s

M
ou

se
N
ad
5

A
B0
31
35
1

1
pg

of
D
N
A
/r
xn

10
0%

[1
07
]

Eg
g

St
oo

l
D
og

po
si
tiv
e
fro

m
12

da
ys

p.
i.

w
ith

10
00
0
pr
ot
os
co
le
ce
s

10
0%

La
rv
a

–
H
um

an
C
ox
1

A
B4
61
41

1
pg

of
D
N
A
/r
xn

10
0%

[1
04
]

Eg
g

St
oo

l
D
og

5
eg

g
of

D
N
A
ex
tr
ac
tio

n
10
0%

E.
sh
iq
ui
cu
s

A
du

lt
–

Fo
x

C
ox
1

JF
90
61
3

10
pg

of
D
N
A
/r
xn

10
0%

[1
04
]

T.
hy
da
tig
en
a

A
du

lt
–

Fo
x

C
ox
1

JN
83
12
9

10
pg

of
D
N
A
/r
xn

10
0%

[1
04
]

Eg
g

St
oo

l
D
og

1
eg

g
of

D
N
A
ex
tr
ac
tio

n
10
0%

T.
m
ul
tic
ep
s

La
rv
a

–
Sh
ee
p

N
ad
1

KC
79
48
0

1
pg

of
D
N
A
/r
xn

10
0%

[1
04
]

Eg
g

St
oo

l
D
og

2
eg

g
of

D
N
A
ex
tr
ac
tio

n
10
0%

T.
cr
as
sic
ep
s

La
rv
ae

–
G
er
bi
l

C
ox
1

EU
54
45
4

10
pg

of
D
N
A
/r
xn

10
0%

[1
04
]

T.
pi
sio

fm
i

A
du

lt
–

D
og

C
ox
1

JX
67
79
6

10
pg

of
D
N
A
/r
xn

10
0%

[1
04
]

IT
S-
1
In
te
rn
al

tr
an

sc
rib

ed
sp
ac
er

1,
IT
S-
2
In
te
rn
al

tr
an

sc
rib

ed
sp
ac
er

2,
IG
S
In
te
rg
en

ic
sp
ac
er
,C

ox
1
C
yt
oc
hr
om

e
c
ox
id
as
e
su
bu

ni
t
1
ge

ne
,C

lp
ca
th
ep

si
n
L-
lik
e
cy
st
ei
ne

pe
pt
id
as
e,

N
ad

1
Th

e
m
ito

ch
on

dr
ia
lN

A
D
H

de
hy

dr
og

en
as
e
su
bu

ni
t
1
(N
ad

1)
ge

ne
,N

ad
5
Th

e
m
ito

ch
on

dr
ia
lN

A
D
H
de

hy
dr
og

en
as
e
su
bu

ni
t
5
(N
ad

5)
ge

ne
,O

vM
S6

O
pi
st
ho

rc
hi
s
vi
ve
rr
in
im

ic
ro
sa
te
lli
te

6,
Sj
R2

Sc
hi
st
os
om

a
ja
po

ni
cu
m

re
tr
ot
ra
ns
po

so
n
2,

p.
iP

os
t-

in
fe
ct
io
n,

EP
G
Eg

g
pe

r
gr
am

of
fe
ce
s-
:u

na
va
ila
bl
e,

M
t
Th

e
m
ito

ch
on

dr
ia
lN

ad
5
ge

ne
,W

bL
D
R
W
.b

an
cr
of
ti
Lo

ng
D
N
A
re
pe

at
,O

vG
ST

O
nc
ho

ce
rc
a
vo
lv
ul
us

gl
ut
at
hi
on

e
S-
tr
an

sf
er
as
e,

RF
4
Re

pe
at

fa
m
ily

4,
N
TC

N
on

-t
em

pl
at
e

C
on

tr
ol
,M

t-
ls
rD
N
A
Th

e
m
ito

ch
on

dr
ia
l-l
ar
ge

su
bu

ni
t
rib

os
om

al
D
N
A

Deng et al. Infectious Diseases of Poverty            (2019) 8:20 Page 11 of 22



Furthermore, the system ‘air-dried stool sample on filter
paper’-LAMP assay would be practical in large-scale mo-
lecular investigation of the other helminthiasis [64].
Given the infection of the genus Fasciola, fascioliasis

mainly affects ruminants and only occasionally humans,
raising public health and economic concerns due to a re-
duction in output [120–122]. Triclabendazole-resistant
F. hepatica, an emerging problem, calls for reliable as-
sessment of efficacy or resistance after deworming ther-
apy [122]. Serological ELISA is applied in the detection
of cattle and sheep, but it is unreliable for species dis-
tinction and the effectiveness of drug therapy [123].
Coproantigen ELISA is appropriate for monitoring adult
infection, whereas it is insufficient correlation with larval
stage invasion until 6 weeks post treatment [124]. LAMP
targeting ribosomal intergenic spacer seems to be an op-
tional detection method that overcomes the difficulty in
taxonomical classification of F. hepatica and F. gigantica.
It can amplify genes from adults, eggs and juvenile
stages with a sensitivity 10 000-fold higher than PCR,
while running an hour faster in the laboratory [65].
Other LAMP-based assays amplifying sequences of the
second internal transcribed spacer (ITS2) show their in-
ability to distinguish between the two Fasciola species,
F. hepatica and F. gigantica [66, 67]. Under field condi-
tions, the LAMP assay can identify infected sheep in the
first week post-infection and 30 days post-therapy, while
ELISA cannot detect infections until 6 weeks and is in-
sufficient to discriminate current and past infections, in-
dicating the practical and applicable determination of
drug efficacy or resistance [66]. In contrast, M.I. Arifin
et al. reported poor performance of LAMP and PCR in
comparison with other conventional methods for the
diagnosis of F. hepatica in naturally infected sheep and
cattle in the field. Of the 64 animals examined, LAMP
and PCR had low sensitivities of 17.9 and 10.7%, respect-
ively, and high specificities of 97.2 and 100%, respect-
ively, with faecal egg count (FEC) and coproantigen
ELISA as composite reference standards. The failure of
LAMP and PCR may be due to factors including insuffi-
ciency of DNA sample, possibly in relation to the choice
of DNA extraction method, amount of faeces substantially
used, and uneven egg distribution in faeces of different
host species [67]. If promoted in the future, such a test is
still suitable for early diagnosis, thus reducing veterinary
costs and the loss of livestock due to fascioliasis [65–67].
To the best of our knowledge, LAMP has not yet been
used for the detection of human fascioliasis.
Paragonimiasis, also known as lung fluke disease, is a pul-

monary inflammation caused by Paragonimus species [125,
126], of which P. westermani is the most epidemiologically
relevant in Asia and sporadically in American and African
countries [127]. The conventional immunological diagnosis
method is sensitive in human paragonimiasis but

unsustainable in epidemiological surveys when intermedi-
ate hosts are detected [128]. A LAMP assay has successfully
amplified the gene sequence of P. westermani eggs in spu-
tum and pleura fluid from patients, as well as metacercariae
in freshwater crabs and crayfish. With a detection limit of
1 × 10− 8 ng/μL, LAMP is close to 100 times more sensitive
than PCR. The LAMP method also yields positive and
negative results coinciding with those from parasitology
tests, acting as an excellent candidate for field surveys and
clinical diagnoses of paragonimiasis [15].
Schistosomiasis ranks on the list of neglected tropical

diseases (NTD) for its impacts on an estimated number
of over 200 million individuals in more than 70 coun-
tries [126, 129, 130]. Of the five Schistosoma spp. that
usually cause human schistosomiasis, S. japonicum is
prevalent in Asia, while S. mansoni and S. haematobium
are mainly concurrent in Africa and the Middle East
[130]. Currently, infection and reinfection continue to
be global challenges, particularly in poverty-stricken and
insanitary communities [131, 132] and in other regions
due to transmission by tourists and immigrants who
come into contact with infested water [130, 132]. Mean-
while, low-density infection remains after deworming
programmes, which still demands an affordable diagnos-
tic approach for pre-patent infection and massive epi-
demiological surveillance despite current parasitological,
immunological and molecular diagnostic methods [131–
134]. The KK method is the current mainstay of schisto-
somiasis diagnosis, and its drawback of day-to-day vari-
ation is inevitable in massive surveillance [9, 130, 131,
134]. In addition, it is of great importance to overcome
the limitation of serological methods and their incap-
acity to discriminate between past and present infections
due to the persistent existence of circular antibodies in
the patient even after an effective cure [135].
As the control of intermediate host snails considerably

contributes to the monitoring of schistosomiasis [126],
LAMP assays were established to detect S. japonicum in
Oncomelania hupensis [27, 68], S. mansoni in Biompha-
laria spp. [13, 71, 72, 75] and S. haematobium in other
snails [71, 72]. LAMP assays are sensitive and specific in
pooled samples, with a detection limit of up to one posi-
tive in 100 negative O. hupensis (expecting for a larger
sample) [68] as well as one snail infected with S. man-
soni in 1000 normal snails [13]. In addition, a snail in-
vaded by a single miracidium can be detected only 1 day
after exposure [68, 72, 132]. Therefore, LAMP was used
to construct the risk map of schistosomiasis based on in-
fected O. hupensis in a field survey and readily adapted
to predict the prevalence tendency [27]. What’s more,
there is another work of LAMP (named SmMIT-LAMP)
assessing not only infected snails but also human stool
in low-transmission area of S. mansoni in Brazil, where
the incidence was corresponded to what has been
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reported, ascertaining the foci of schistosomiasis trans-
mission and helping build risk maps of schistosomiasis
[77]. Furthermore, LAMP was developed to detect S.
japonicum in rabbit models [16, 69, 70] and S. mansoni
in murine models [71, 73, 74]. This approach detected
positive results as early as 1 week [16, 69], and even 3
days, after low-intensity infection in rabbit models [70],
tested negative as late as 12 weeks post treatment, which
is consistent with PCR in early diagnosis, and tested
negative 2 weeks later than PCR [70], thereby possessing
potential in early diagnosis, treatment and assessment of
the efficacy after chemotherapy [16, 69, 70]. LAMP is
also readily adopted in the clinical determination of S.
japonicum in human serum samples [16, 70], S. mansoni
in stool samples [77], as well as S. mansoni and S. hae-
matobium in urine samples [51, 76]. In human sera with
light to mediate infection, LAMP achieves the sensitivity,
specificity, PPV and NPV of 95.5, 100, 100 and 89.4%,
respectively, whereas those for S. mansoni and S. haema-
tobium in urine sample are 90–100% [76]. Additionally,
the sensitivity (92.86%), specificity (80.11%), and NPV
(99.33%) of SmMIT-LAMP in human stool samples are
overall acceptable, but the PPV is 26.00%, which can be
explained by the higher sensibility of LAMP over the
reference standard (KK), especially in patient with low
infection levels [77]. In addition, without any need for
costly laboratory instrumentation and highly skilled
personnel, the refinement of DNA extraction (i.e., LAM-
Pellet, NaOH and heat lysis [51]), the harness of a port-
able plasma separator [136] and the utility of a
user-friendly chip [74] fulfil the requirements of the
POC test and are estimated to have a competitive
per-person cost, with less than $7.25 for the circulating
cathodic antigen test and no more than $7.00 for a sin-
gle KK test [74]. Accordingly, further evaluation is re-
quired for POC use in endemic areas [51, 74, 76].

Detection of nematodes by LAMP
Nemathelminthiasis, caused by nematodes, is a globally
rampant parasitic disease. The pathogenic nematode in-
fecting human includes STH, S. stercoralis, Toxocara spp.,
filariae, and other nematodes with distinctive life cycles,
namely, A. cantonensis and Trichinella. Nematodes in vet-
erinary and agricultural fields are also included.
STH, including A. lumbricoides, hookworms, and whip-

worms, mainly occur in tropical and subtropical regions
[137]. The KK method is currently the most common
method in STH diagnosis and is recommended by the
WHO to conduct STH surveys [17, 78, 79, 138]. However,
for the false negative results brought about by the reduc-
tion of egg production after chemotherapy or the hatching
of eggs due to the delay of examination [139, 140], it is ac-
tually a suboptimal choice in a mass drug administration
(MDA) programme where post-chemotherapy evaluation

is needed. In contrast, the LAMP assay is superior to the
parasitological and unspecific serological approaches in
that it tests positive when there is merely a single ovum
[17], without cross reactivity or non-template positive [17,
78, 79]. In terms of the quantity of DNA, the SmartAmp2
assay amplifies the STH β-tubulin gene provided that
there is one pg of DNA [79], and hookworm detection tar-
geting the ITS-2 gene can even succeed with 0.4 fg of
DNA [78]. None of the false positives is observed in these
LAMPs, which is important, as multiple helminthiases
may coexist in individuals in endemic areas [17]. In simu-
lated clinical samples, the LAMP assays exhibit great
agreement with the KK method in which the kappa coeffi-
cient is calculated to be 0.72 for A. lumbricoides determin-
ation targeting ITS-1 [79] and 0.9 for hookworm
measuring targeting ITS-2 [17, 78]. In the SmartAmp2
assay, the pre-addition of HNB dye achieves even better
accuracy by providing a closed system to avoid contamin-
ation in post-reaction manipulation using SYBR Green
[79]. Bovine serum albumin was added, and it performs
well in crudely prepared stool samples despite the pres-
ence of inhibitors, which is undoubtedly a competitive ad-
vantage for a POC tool, though it still needs further
comparison [79]. However, the vulnerability of HNB to
pH changes may be a challenge for its stability but can be
resolved by standardizing reaction conditions [79].
S. stercoralis, acting as one of the opportunistic nema-

todes transmitted by soil, is the causative agent of human
strongyloidiasis. It usually contributes to asymptomatic in-
fection but is a deadly uncontrolled hyperinfection syn-
drome in immunocompromised patients [141–145], with
a mortality rate of up to 87% [146, 147]. There is no single
gold standard for its detection, as the microscopic exam-
ination of larvae in stool samples is insufficiently sensitive
even when supplemented with enrichment techniques.
Serological tests are sensitive but lack specificity [148–
151]. PCR-based techniques, though sufficiently specific,
are not diagnostically superior to parasitological tech-
niques because of their unsatisfactory sensitivity, which is
presumably attributed to the irregular larval output in
chronic strongyloidiasis, the uneven distribution in stool
specimens, the DNA extraction process, the existence of
inhibitors in stool samples, etc. [151]. Generally, the de-
finitive diagnosis of strongyloidiasis is made by parasito-
logical examinations based on clinical symptoms,
serological evidence, etc. [52, 82]. Compared with mor-
phological examination, nucleic acid tests are advanta-
geous in that they can detect specimens where parasites
had been killed [52]. In 2014, the LAMP assay for S. ster-
coralis was first reported to be capable of amplifying less
than ten 0 DNA copies of larvae per reaction, or 10− 2 di-
lution of one spiked larva in stool samples, comparable to
the results of PCR [52]. Unfortunately, the foregoing fac-
tors that may influence PCR-based techniques, e.g., the
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DNA extraction process, also may impact it [52]. Aiming
at surmounting the shortcomings of common stool sam-
ples, urine samples from rodent models were used in a
novel LAMP assay named Strong-LAMP [82]. The cre-
ative introduction of urine samples may possess predom-
inant advantages in collection, storage and processing
over stool samples. Furthermore, when employing urine
samples of the rodent model, Strong-LAMP shows posi-
tive results from 5 days after infection of 40 third-stage
(L3) infective larvae (1 day earlier than employing stool
samples) to 3 days after infection of 400 or 4000 L3 infect-
ive larvae (2 days earlier than employing stool samples).
Nevertheless, since requests for urine samples in S. ster-
coralis detection are rare, its clinical value in latent infec-
tion of humans needs further study [82].
The larvae of T. canis and T. cati are responsible for

human toxocariasis. Children specifically tend to acquire
these kinds of telluric zoonosis and saprozoonosis by en-
vironmental exposure to Toxocara spp. [152], which
makes it one of the most common cosmopolitan helmin-
thiases [153]. The prevention of its transmission depends
on the condition of the environmental contamination
levels and the accurate determination of its sources [81].
However, Toxocara identification by traditional micros-
copy of stools from pets or environmental samples re-
mains a methodological concern due to its insensitivity
in low-burden cases and its difficulty in distinguishing T.
canis from T. cati eggs [80, 81]. PCR assays have been
designed to discern Toxocara spp. in stools [154] or en-
vironmental samples [155] and to distinguish between T.
canis and T. cati in soil samples [156]. The
species-specific LAMP assay targeting ITS-2 was vali-
dated by two groups and found to be ten-fold more sen-
sitive than PCR without cross reactivity in the laboratory
between Toxocara spp. and is applied in domesticated
dogs and sand samples [80, 81]. In the context of envir-
onmental specimens, LAMP manifests a detection limit
of 3 eggs/10 g of sand and less than 3 eggs/30 g of stools,
compared with the 6 eggs/10 g of sand and more than 2
eggs/30 g of stools detection limit of PCR [80, 81]. In a
field survey of soil contamination, LAMP yield a positive
rate of 42.7% versus 7.7% of PCR [157]. In another field
study, even LAMP fails to identify very low contamin-
ation, which is a pitfall that may be attributed to the
crude processing of DNA extraction in LAMP compared
with that of PCR [81], the LAMP assay successfully de-
creased the standard examination time by 50% com-
pared to that of PCR [81].
As one of the most debilitating infectious diseases in

the world, lymphatic filariasis, which is caused by bru-
gian filariae and W. bancrofti, is also regarded as a ser-
ious public health concern for 856 million people in 52
countries around the world [158]. The WHO MDA
programme effectively reduces morbidity, raising new

concerns about diagnosis and surveillance in the control
areas and determination of the treatment endpoint in
the post-MDA stage [8, 83, 87, 88, 159]. So far, the diag-
nosis largely counts on the microfilaraemia test, which
employs night blood samples [86, 88] and is recom-
mended by the WHO to conduct a transmission assess-
ment survey (TAS) where Brugia spp. is endemic. It is
used as the minimum in TAS but suffers from the re-
duction of sensitivity in response to the prevalence de-
crease in the post-MDA era. Simultaneously, more
accurate methods, such as antibody tests and PCR, are
restricted by their inherent shortcomings. The antige-
naemia tests recommended to map W. bancrofti endem-
icity, namely, immunochromatography card test and
filariasis test strip [160, 161], are unavailable for brugian
filariae and may cross react with Loa loa [160, 162, 163].
Alternatively, as a competitive candidate in the present
study, LAMP assays manifest cheerful outcomes in both
laboratory and clinical tests [87, 88]. For instance, the
W. bancrofti LAMP test, with a determination limit of
0.1 pg per reaction equivalent to that of PCR, costs over
$1.38 less than the latter [87]. It is estimated that there
is approximately 200 pg and 100 pg of DNA inside a sin-
gle microfilaria of W. bancrofti or Brugia spp., respect-
ively [164]; that is to say, the detection limit of the
LAMP assay exceeds the theoretical detection limit of
microfilariae per ml via microscopic inspection [165].
Furthermore, compared with the serological tests that
are inadequately specific, almost all the LAMP assays for
lymphatic filaria diagnosis are species-specific, except
one detecting brugian filariae for both B. timori and B.
malayi [86–88].
A similar methodological handicap is used to eliminate

O. volvulus, another major public health concern mostly
rampant in sub-Saharan Africa [83, 166]. Following the
impediment to onchocerciasis transmission, the chal-
lenge emerges in that the conventional diagnostic
method of skin snip microscopy and the primary diag-
nostic antibody test, the Ov-16 rapid diagnostic test, is
losing its sensitivity in low-prevalence settings [167,
168]. Alternatively, nucleic acid-based assays can be
employed in both diagnosis and xenomonitoring with
extreme sensitivity and specificity. O-150 PCR, therefore,
is recommended by the WHO to undertake vector sur-
veillance but is limited in resource-limited areas [84,
169]. Using the economical LAMP assay as a diagnostic
option manifests sensitivity just slightly lower than the
utmost sensitive qPCR when targeting cox1 but is ten
times higher than conventional PCR in O-150 assay at
the same time [84, 85]. In terms of specificity, the cox1
assay is reported to cross react with O. chengi, a sympat-
ric cattle parasite transmitted by black flies, or rather,
the cox1 assay can be used only in clinical diagnosis
using skin biopsy samples unless significant progress is
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made to improve specificity [85]. However, whether the
other set of primers designed for O-150 can amplify the
heterologous sequence from O. chengi remains to be de-
termined [84], as the PCR targeting O-150 has been
proven to cross react with O. chengi unless a specific
DNA probe is added [170]. In addition, an elaborate
comparison is designed between the HNB and neutral
red dyes, and the latter improves the sensitivity 10-fold,
which sheds light on a new approach for parasite LAMP
amelioration, maximizing its usefulness in a world with
a changing global landscape of infection [84].
In contrast to other parasites, in the post-MDA surveil-

lance of filariae, the exploitation of samples from mos-
quito vectors is considered timelier, more operationally
feasible and more ethically accepted than detection using
specimens from humans [8, 159, 168, 169, 171]. As ento-
mological inspection via field dissension is expensive, time
consuming and unable to distinguish O. volvulus from O.
chengi, O-150 PCR using vector samples is currently
widely accepted to determine the interruption of filariae
[8, 87, 159, 167–169]. LAMP can also act as an excellent
surrogate for PCR in this case. As shown in O. volvulus
detection targeting OvGST1a, without crossreactivity with
O. chengi or other filariae, LAMP tests positive with
merely 0.01 ng of DNA spiked in 200 insects, which is
more sensitive than PCR, which tests positive in 0.01 ng/50
insects [83]. Based on the conventional LAMP assays, an
improved non-instrumented nucleic acid-LAMP was de-
veloped, devised as a single portable electricity free device
with comparable or even higher sensitivity than a normal
assay, demonstrating that it is more suited for field surveys
[86]. Whereas the existing LAMP assays for vector moni-
toring are designed to utilize the DNA extracted from
infective-stage larvae (L3), there are great hurdles in xeno-
monitoring, where the DNA test cannot identify DNA
from L3 larvae from immature stage parasites (L1 or L2) in
vectors, which actually distinguishes xenomonitoring from
entomological monitoring of transmission [159]. As the
discrimination between infectious and immature parasites
will clarify whether the positive result is due to adult
filariae not responding to drug treatment or recent in-
fection indicating active transmission, it is taking on
increasing significance in the assessment after
large-scale drug treatment [8, 171]. For O. volvulus, in
which the infectious stage parasites are located in the
head capsule isolated from the immature stage larvae
in the abdomen and thoracic muscle, the obstacle can
be overcome by the separation of the head and body
and therefore provide accurate evaluation of transmission
[159, 172]. On the other hand, although there are specific
L3-stage RT-PCR tests that are capable of indirectly deter-
mining the infection potential and transmission dynamics
of lymphatic filariae via RNA [173, 174], dissection re-
mains more common for the detection of infectious stage

lymphatic filariae [159]. However, it can be expected that
the development of RT-LAMP in parasitology may favour
this technique to replace RT-PCR and conventional dis-
section to precisely predict the transmission potential
even in low-resource areas.
Loa loa is a long-neglected filariae that is reported to

cause deadly serious adverse events after ivermectin
treatment [86, 89–91, 175, 176] at a low threshold of
microfilaria (mf) burden [175], where determination of
the mf burden before MDA programme is especially im-
portant. Unfortunately, the routine diagnosis and quanti-
fication in remote areas rely on microscopic inspection
of midday blood samples, which requires expertise and
processing of a considerable number of samples and is
unqualified to serve as a POC or a large-scale screening
tool. Among the existing LAMPs, one amplifies the
LL3M9 gene and exhibits the lowest detection limit of
0.5 ag/reaction, far lower than the formerly reported 0.1
pg/reaction for W. bancrofti [87, 90]. Considering the
practical significance of Loa loa mf burden quantitation
in MDA practice, Loa loa LAMP targeting LLMF72 was
assessed for its potential for semi-quantitation. As a re-
sult, a correlation was observed between the time to
LAMP reaction positivity (minutes) and the mf concen-
tration in the blood, allowing the naked-eye determin-
ation of whether the mf burden is above or below the
specific threshold. For example, the run time to positiv-
ity is 15 min at the threshold of > 30 000 mf/mL, 20 min
at threshold of > 5000 mf/mL, and 25 min at the thresh-
old of >v100 mf/mL, which is promising for application
in the Loa loa microfilaraemia assessment before iver-
mectin treatment and thus facilitating the elimination of
filariasis [89]. Since the LL3M9 comprises multiple cop-
ies of a simple nematode-conserved repeat, and LLMF72
is a single copy gene, which may exert an impact on the
sensitivity and specificity, a new bioinformatic pipeline is
designed to mine a new species-specific sequence that is
more suitable for MDA practice. Consequently, RF4 is a
new biomarker with specificity; however, it lacks sensi-
tivity compared with the LL3M9 or LLMF72 assays.
Nevertheless, the bioinformatic pipeline remains a cre-
ative and robust method to further explore the potential
of LAMP [91].
Dirofilariasis caused by D. repens, another species of

mosquito-borne filariae [177], is regarded as an emerging
zoonotic disease calling for more accurate diagnosis. The
traditional diagnostic method relies on microscopic exam-
ination of blood from the hosts [178]. Serological screen-
ings [179] and PCR tests have been designed [180, 181].
The LAMP assay targeting the COI gene was devised as 2
versions for further evaluation. With respect to sensitivity,
the detection limits of reverse transcriptase LAMP
(RT-LAMP) and propidium iodide LAMP (PI-LAMP) are
0.15 fg and 10 fg, respectively, versus the detection limit of
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15 fg for conventional PCR. With a lower limit, the LAMP
assays yield amplicons within approximately 40min, while
conventional PCR takes 2 h. Generally, both versions of
LAMP prevail over conventional PCR in both sensitivity
and efficiency, while all of them are species-specific in the
current study. Considering practical value, while RT-
LAMP employs a RT-PCR instrument, PI-LAMP, by
introducing propidium iodide, permits visualization of the
amplification as UV fluorescence, meriting more wide-
spread application in field surveys and clinical diagnoses
[92]. Because of its combination of sensitivity, specificity,
rapidity and convenience, it may be a promising ancillary
tool in dirofilariasis surveillance and prevention, such as
large-scale travelling animal quarantine inspection or culi-
cid mosquito screening.
A. cantonensis infects people on the Pacific islands and

Southeast Asia. It is the major cause of an eosinophilic
meningitis in humans in endemic areas [182]. The lack
of standardization of a diagnostic procedure and the
current situation of being overlooked in accounts for the
use of a presumptive diagnosis, which is primarily based
on the combination of patient history and clinical cri-
teria, e.g., morphological examination of adult worms or
larvae in cerebrospinal fluid, of which the positive rate is
between 2%~ 12% [183], are unable to meet the expect-
ation of either clinical diagnosis or large-scale surveil-
lance [184, 185]. In an effort to help establish a
surveillance system, two LAMP assays were developed
to detect the L3 larvae in molluscan hosts. One amplify-
ing the ITS-1 gene manifests a detection limit of 1 fg/re-
action [94]. The other test targeting the 18S rRNA gene
is inferior, with a detection limit of 10 pg/reaction [93],
while both have higher sensitivity than PCR, which can
detect DNA > 100 pg/reaction [93, 94]. In a similar field
survey, the ITS-1 LAMP assay demonstrates detection
rates of 6.7 and 4.4% higher than the standard digestion
method and PCR, respectively [94]. In summary, all of
the above information exhibits considerable potential
and superiority in replacing existing approaches in
large-scale field surveys and clinical diagnoses [93, 94].
Trichinellosis is a significant zoonotic disease caused

by the ingestion of raw or insufficiently cooked meat
containing Trichinella spp., for which the inadequacy of
veterinary control is one factor to blame. There had
been no detailed and systematic reports of the sensitivity
and conditions of the assays for Trichinella determin-
ation by 2012, when 2 LAMP assays were designed [95,
96], amplifying mitochondrial large ribosomal subunit
DNA (mt-lsrDNA) and a 1.6 kb repetitive sequence from
the larvae, respectively. Both assays manifest sensitivity
10-fold stronger than conventional PCR [95, 96], but the
one targeting mt-lsrDNA turns out to be 10-fold less
sensitive than RT-PCR [96]. Further exploration could
be made to improve the sensitivity of LAMP to make it

an optimal methodology for trichinellosis detection in
practice, e.g., meat quarantine or field survey.
In addition to the human medical nematoda men-

tioned above, the application of LAMP has spread to the
veterinary [98, 99] and agricultural fields [97], which
makes it a promising detection tool shared by all fields
of bioscience.

Detection of cestodes by LAMP
Taenia species (T. solium, T. saginata and T. asiatica), the
causative pathogens of taeniasis, can be sympatrically en-
demic in Asia, such as in China and Thailand [186]. T.
solium, normally transmitted between pigs and humans,
results in neurocysticercosis with a range of manifesta-
tions, especially epilepsy and seizures [7]. Conventional
proglottid examination, as a common diagnostic method
for taeniasis, fails to morphologically differentiate the eggs
of Taenia species. Multiplex PCR and nested PCR open
the door for characteristic discrimination [187, 188] but
are unrealistically applied in field surveys for high expense
and time considerations. Therefore, a LAMP assay with
the cytochrome c oxidase subunit 1 (cox1) primer set was
developed for the differentiation of Taenia spp. at the spe-
cies level in the laboratory and in the field, managing to
detect eggs in traditional faecal samples in epidemiological
surveys with high specificity and even higher sensitivity
than PCR [100–103]. Ranging from five to ten eggs per
gram (EPG) of faeces, the detection limit of LAMP is
comparable to that of five EPG and 40 EPG of multiplex
PCR and nested PCR, respectively [100, 187, 188]. The
specificity is approximately 100%, with only two in 76
(2.6%) T. saginata recognized as T. asiatica in faecal sam-
ples [100]. Out of 51 proglottids expelled from 35 carriers,
consistent results were obtained by LAMP under field
conditions and in the laboratory, except for one sample
[102]. Thus, the tedious procedure of simultaneously iden-
tifying Taenia species is expected to be simplified to re-
duce the possibility of cross contamination and to save
time, while the handy copro-DNA extraction method
is expected to take the place of centrifugation. Re-
markably, the modification of mLAMP combined with
dot-ELISA has succeeded in specific amplification in a
single tube, demonstrating an easier and more prac-
tical POC diagnostic method for real-time human
Taenia species confirmation [44].
Widely distributed in pastoral areas worldwide but

often neglected, echinococcosis, especially cystic echino-
coccosis and alveolar echinococcosis, attracts enormous
attention by posing as a threat to both humans and ani-
mals and results in economic loss [189–193]. An on-site
approach is expected to replace the ethically-challenged
post-mortem inspection as the gold standard in suscep-
tible Echinococcus-infected definitive canid hosts [189,
193]. In addition, a more practical and available tool is
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sought to solve the problem of copro-ELISA lacking sen-
sitivity in latent infection monitoring [194] and to sus-
tain reliability of copro-PCR while reducing the expense
[195, 196] in epidemiological surveillance in endemic
areas at the same time. LAMP was exploited to detect E.
granulosus s. s. (G1-G3) copro-DNA in dogs [104–106]
and then cysts in camels and humans [109]. It stands
out for its high sensitivity in detecting infection in
copro-samples from definitive hosts 22 days after expos-
ure, which is equivalent to 3 days, 4 days and 47 days
earlier than ELISA, conventional PCR and light micros-
copy, respectively [106]. A similar advance in E. multilo-
cularis determination depicts LAMP as a substantial
alternative for field surveillance of AE in areas of en-
demicity [107]. LAMP was also applied in other cestodes
of veterinary relevance, including E. equinus (G4), E.
canadensis (G6-G10), E. felidi (lion strain), E. ortleppi
(G5) [108], E. shiquicus, T. hydatigena, T. multiceps, T.
pisiformis and T. crassiceps [104]. Furthermore, it was
sensitive enough to distinguish different Echinococcus
species, achieving sensitivity down to 2% of a single pro-
toscolex or egg per reaction [104, 108], but failed to dis-
criminate at the genotype level [108]. There are not yet
inadequate data to relate intrastrain genetic variants to
different life cycles, pathogenicity or any other practical
relative features [191, 192, 194, 197, 198]. Subsequently,
LAMP has great potential to become a new tool for fu-
ture perspectives on molecular epidemiology in echino-
coccosis surveillance at this stage. Additionally, the
real-time LAMP assay gave 100% concordance with the
results obtained by nested RT-PCR when testing parasite
DNA extracted from hydatid cysts from domestic ani-
mals and humans, which highlights a brilliant future in
clinical diagnosis of CE [108, 109]. Recently, LAMP was
first reported to determine Taenia species in an epi-
demiological survey in Mongolia [199]. Above all, the
rapid, sensitive and accurate LAMP is sufficient to facili-
tate a large-scale epidemiological survey.

Application of LAMP in field research
As discussed above, the LAMP assay is a robust and ver-
satile tool that is capable of meeting the WHO’s require-
ments for ideal POC tools of ASSURED and possesses
the potential to become an appealing option for field re-
search, which was substantiated by a series of laboratory
and diagnostic tests.
From the perspective of field application, major

achievements were made for LAMP assays for malaria
and tuberculosis [200, 201]; in both cases, scientists
worked extensively with the WHO for the implementa-
tion of the tests in field, and their standardized reagent
kits have been used in developing countries as patient
side tools [202]. For protozoa, bacteria and fungi, several
commercial reagent kits have been put on the market

and have performed excellently [203, 204]. With respect
to helminths, considerable significance is attached to fil-
ariae. LAMP assays for the detection filariae have
already come to MDA management practice in Guinea,
Nigeria and Southeast Asia [205–207]. In a recent epi-
demiological survey in Mongolia, LAMP also played a
significant part [199].

Conclusions
To sum up, though presently in its infancy, the LAMP
assay is a groundbreaking DNA amplification technique
with prominent advantages. Its ASSURED characteristics
and its versatility in adapting to various circumstances
make it an ideal POC tool and friendly to field surveys.
The chief shortcoming of LAMP is the false-positive re-
sult caused by primer-primer reaction and contamin-
ation. The former needs further evaluation, and the
latter can be solved by the amelioration of the reaction
system, detection approaches, etc. Another handicap in
LAMP development is the difficulty in primer design.
However, its merits outweigh its weakness, and LAMP
has blossomed in the detection of microorganisms and
protozoa detection and has already entered into the
market and epidemiological surveys. Overall, the meth-
odology will be improved in the future, and the active
role of LAMP in clinical and epidemiological practice is
foreseeable.
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