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Abstract

Background: Disease surveillance systems are essential for effective disease intervention and control by monitoring
disease prevalence as time series. To evaluate the severity of an epidemic, statistical methods are widely used to
forecast the trend, seasonality, and the possible number of infections of a disease. However, most statistical methods
are limited in revealing the underlying dynamics of disease transmission, which may be affected by various impact
factors, such as environmental, meteorological, and physiological factors. In this study, we focus on investigating
malaria transmission dynamics based on time series data.

Methods: A data-driven nonlinear stochastic model is proposed to infer and predict the dynamics of malaria
transmission based on the time series of prevalence data. Specifically, the dynamics of malaria transmission is
modeled based on the notion of vectorial capacity (VCAP) and entomological inoculation rate (EIR). A particle Markov
chain Monte Carlo (PMCMC) method is employed to estimate the model parameters. Accordingly, a one-step-ahead
prediction method is proposed to project the number of future malaria infections. Finally, two case studies are carried
out on the inference and prediction of Plasmodium vivax transmission in Tengchong and Longling, Yunnan province,
China.

Results: The results show that the trained data-driven stochastic model can well fit the historical time series of P.
vivax prevalence data in both counties from 2007 to 2010. Moreover, with well-trained model parameters, the
proposed one-step-ahead prediction method can achieve better performances than that of the seasonal
autoregressive integrated moving average model with respect to predicting the number of future malaria infections.

Conclusions: By involving dynamically changing impact factors, the proposed data-driven model together with the
PMCMC method can successfully (i) depict the dynamics of malaria transmission, and (ii) achieve accurate
one-step-ahead prediction about malaria infections. Such a data-driven method has the potential to investigate
malaria transmission dynamics in other malaria-endemic countries/regions.
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Background
Disease surveillance systems play essential roles in the
control, elimination and eradication of infectious diseases,
as they monitor, forecast and record the spatial and tem-
poral distributions of disease prevalence [1]. Based on the
time series of disease prevalence, various statistical meth-
ods have been proposed to predict the number of disease
cases, such as autoregressive integrated moving average
(ARIMA) method [2] and exponential smoothing method
[3]. Such methods rely heavily on the statistical patterns
of historical surveillance data, which are limited in under-
standing the underlying dynamics of disease transmission.
However, in reality, the natural transmission of an infec-
tious disease depends on the complex interactions among
three types of interactive agents: the disease pathogens
and/or parasites, the host, and the transmission agents
[4, 5]. Moreover, the dynamics of disease transmission
may also be affected by various risk factors ranging from
microscopic to macroscopic scale, such as environmen-
tal [6], physiological [7], climatic [8, 9], socioeconomic
[10, 11], and human behavioral factors [12–16]. Therefore,
to combat infectious diseases, it would be necessary and
helpful for public health authorities to model the dynam-
ics of disease transmission by involving various impact
factors and make policies from a perspective of systems
thinking [17, 18].
As one of the most serious and deadly infectious dis-

eases, malaria is a mosquito-borne infectious disease that
is widespread in the tropical and subtropical regions
around the equator. According to the World Health Orga-
nization, in 2018 there were 228 million cases of malaria
worldwide resulting in an estimated 405 000 deaths.
Approximately 93% of the cases occurred in Africa [19].
In China, the implementation of malaria control mea-
sures for over 30 years has significantly reduced the overall
burden in the past century. However, early in the 21st cen-
tury, malaria reemerged, representing once again a severe
public health threat especially in the remote and poverty
regions, such as those in Yunnan province, with very lim-
ited intervention andmedical resources. In 2006 and 2007,
a total of more than 0.11 million confirmed and more
than 0.13 million suspected cases were reported [20]. In
this paper, taking the Plasmodium vivax situations in two
counties, Tengchong and Longling, in Yunnan province,
China, as case studies, we focus onmodeling the dynamics
of P. vivax transmission based on time series of historical
malaria prevalence data.
Starting from the Ross model, a variety of compart-

mental models with different level of complexity has been
proposed to understand the dynamics of malaria trans-
mission, which take into consideration various impact
factors, such as population size [21], climate [22, 23],
human movement [24–27], and socio-economic factors
[11, 28]. (For more information, please refer to reference

[29]). However, since all factors evolved in such models
are treated endogenously, they are limited in modeling
open systems that involve dynamically changing exter-
nal factors (e.g., temperature and rainfall). For example,
existing studies have revealed that daily temperature can
influence not only the gonotrophic cycle of mosquitoes
[30–32], but also the sporogonic cycle of parasites [33].
Moreover, rainfall or humidity can also significantly influ-
ence the population size of mosquitoes [34–37]. Accord-
ingly, to build early warning systems and predict malaria
transmission potential, the notions of vectorial capacity
(VCAP) and entomological inoculation rate (EIR) have
been used to capture the impact of dynamically chang-
ing temperature and rainfall on the dynamics of malaria
transmission [38–40]. Conceptually, the VCAP incorpo-
rates all information about mosquito population (e.g.,
human biting rate, life expectancy), which is defined as
the number of potentially infective contacts a person
makes, through the mosquito population, per day [29]. By
considering disease prevalence in the human population,
the EIR captures the rate of infectious bites per person
per day.
In addition to those meteorological factors, many other

factors can also indirectly affect malaria transmission
dynamics, making it difficult to predict the number of
potential malaria infections. For example, human move-
ment can introduce malaria cases from high-transmission
areas into previously low-transmission or malaria-free
areas [24, 25]. Furthermore, the imported cases may cause
the recurrence of malaria when the environment is suit-
able for local transmission [26, 27]. In this case, to forecast
the future disease infections of a location, it would be nec-
essary for a prediction model to take into consideration
both the dynamics of malaria transmission and the uncer-
tainty of malaria cases imported from other locations. In
this paper, we present a data-driven nonlinear stochastic
model to characterize the impact of dynamically changing
meteorological factors on malaria transmission dynam-
ics, as well as the uncertainty about imported cases
caused by human movement. Specifically, the proposed
model consists of three components: (i) a weather-driven
transmission model describing the malaria transmission
dynamics affected by dynamically changing temperature
and rainfall, (ii) a periodic function that reflects the sea-
sonality of imported cases, and (iii) a stochastic error
term (noise). In the proposed model, there are sev-
eral unknown and unmeasurable parameters, such as the
human recovery rate and the force of infection. There-
fore, we employ a recently developed method known as
PMCMC to infer unknown model parameters by fitting
the time series of malaria prevalence data. Based on the
estimated model parameters, we can further make a one-
step-ahead prediction about the number of future malaria
infections.
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Methods
In this section, we present a data-driven nonlinear
stochastic model to infer and predict the dynamics of P.
vivax transmission in Tengchong and Longling, Yunnan
province, China.

Model description
The data-driven nonlinear transmission model consists of
three components: a weather-driven component, a peri-
odic function, and an error term. The weather-driven
component describes the dynamics of malaria transmis-
sion using the notion of VCAP and EIR. Let g denote the
per-capita daily death rate of a mosquito (i.e., the force
of mortality). Then, the average lifespan of a mosquito is
1/g. By assuming that the survivorship is constant over
the mosquito lifespan, the survival time of a mosquito
follows an exponential distribution based on the hazard
model. Accordingly, the probability of a mosquito survive
through one whole day is p = e−g . Further, let n denote
the sporogonic cycle length of the Plasmodium. Then, the
probability of an infected mosquito be infectious is e−gn.
Based on the Macdonald model [41], vectorial capacity at
time t can be formulated as

Vt = ma2e−gn

g
= −ma2pn

ln p
, (1)

wherem is the averagemosquito density per person, and a
is the expected number of bites on humans per mosquito,
per day (i.e., human feeding rate). In doing so, VCAP
describes the expected number of infectious bites from all
the mosquitoes after feeding on an infectious host, assum-
ing that all the mosquitoes get infected when they bite the
infectious host. Notably, the value of Vt can be estimated
by dynamically changing temperature and rainfall, so it
varies with time t.
By definition, VCAP only characterizes the

environmental- and biological-driven malaria transmis-
sion risk or the receptivity of an area to malaria. It does
not take into account parasite availability in the human
population [40, 42]. To assess the risk of infection for
humans, we further use the notion of EIR as a measure
of the average number of infectious bites per person per
day [29]. Let xt denote the proportion of humans who
are infectious at time t and c denote the transmission
efficiency from infectious human to mosquito. Conse-
quently, mosquitoes become infected at a rate of acxt .
Then, the proportion of infected mosquitoes is a ratio of
two waiting times acxt

g+acxt : the waiting time to either death
or infection 1/(g + acxt), and the waiting time to infec-
tion among surviving mosquitoes 1/acxt [7]. Accordingly,
the proportion of infectious mosquitoes at t is given by
the product of the probabilities of becoming infected and,
surviving the incubation period e−gn, that is,

zt = acxt−1
g + acxt−1

e−gn. (2)

At time t, EIR can be formulated as

EIRt = mazt = ma2cxt−1e−gn

g + acxt−1
. (3)

Based on Eq. 1, we have

EIRt = cV txt−1
1

1 + acxt−1/g
. (4)

If xt is very small, we have EIRt ≈ cV txt−1 [7].
Based on the above-mentioned formulation, we can

then model the dynamics of malaria transmission. Let r
denote human recovery rate from malaria and Vt denote
the value of VCAP at t. The change in the proportion of
human infections at t can be formulated as

�xt = bEIRt(1 − xt−1) − rxt−1

≈ bcxt−1Vt(1 − xt−1) − rxt−1.
(5)

Here, b is the transmission efficiency from infectious
mosquito to human after an infective contact. In this
paper, we denote β = bc as the mutual transmission effi-
ciency between human and mosquito. Accordingly, we
have

xt = xt−1 +�xt = −βVtx2t−1 + (1− r+βVt)xt−1. (6)

Here, the parameters β and r will be inferred from time
series of malaria prevalence data.
In addition to malaria transmission dynamics within

an area, the number of malaria infections can also be
affected by many other factors. Especially in the border
areas between China and Myanmar, imported cases are
one of the most important factors. Existing studies have
shown that the imported malaria cases in Tengchong have
a seasonal pattern [9]. Therefore, in this paper, we formu-
late the data-driven stochastic model as a combination of
the weather-driven component α1xt , a periodic function
α2| sin(ωπ ∗ t)|, and an error term εt . In summary, the
data-driven nonlinear stochastic model is formulated as

yt = α1xt + α2| sin(ωπ ∗ t)| + εt , (7)

where εt ∼ N (0, σ). Here, the parameters α1, α2, ω, and σ

will be inferred from the time series of malaria prevalence
data.

Estimation of vectorial capacity
Existing studies have shown that temperature and rainfall
can be used to assess the value of VCAP by estimating
a, p, n, and m in Eq. 1. Denote u as the gonotrophic
cycle length of mosquitoes, that is, the period between the
blood meal and oviposition. Then, u can be estimated by
the dynamically changing temperature T [40]:

u = 0.5 + fu/(T − gu + 2), (8)
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where fu is the number of degree days needed for
mosquito maturation, and gu is the threshold below which
gonotrophic development ceases. Accordingly, the daily
human feeding rate can be calculated as a = h/u, where
h is the proportion of mosquitoes that have ever fed on
a human (i.e., human blood index). The probability of a
mosquito surviving through one whole day can be for-
mulated as p = γ 1/u, where γ is the survival rate per
cycle.
Ceccato et al. [40] have also shown that the length of

gonotrophic cycle of mosquitoes n can be estimated by
temperature T as

n = fn
2fu/u(T − gu + 2) + (T − gn)

, (9)

where fn is the number of degree days required for par-
asite development, and gn is the threshold below which
parasite development ceases. The descriptions and values
of all parameters and variables are summarized in Table 1.
It is worth noting that even though the average mosquito
density per person is simply estimated by m = 10R as in
reference [40], it does not affect the results of our model.
The reason is that m is multiplied by β and α1 in the pro-
posed stochastic model, which will be inferred using time
series of malaria prevalence data.

Inference of model parameters
In this section, we employ a particle Markow chainMonte
Carlo (PMCMC) algorithm to infer the model parameters
based on time series of malaria prevalence data y1:τ . Let
θ = {β , r,α1,α2,ω, σ } denote the set of parameters in the
proposed model (see Table 1). We assume that the out-
put yt of the model follows a Gaussian distribution. Then,
we can infer the values of model parameters in θ and the
latent state variables x1:τ using the Bayesian approach by
calculating their posterior distribution

p(θ , x1:τ |y1:τ ) = p(y1:τ , x1:τ |θ)p(θ)

p(y1:τ )
, (10)

where p(θ) is the prior distribution of parameters in θ .
Since the time series of malaria prevalence is dis-

crete, the posterior distribution in Eq. 10 is analytically
intractable. To solve this problem, the Markov chain
Mento Carlo (MCMC) algorithm provides a way to avoid
deriving the analytical solution of the posterior distribu-
tion by generating samples based on the prior and likeli-
hood. Based on the MCMC algorithm, we need to evalu-
ate the posterior distribution of θ∗ and x1:τ given y1:τ at
the same time by computing the likelihood p(y1:τ , x1:τ |θ)

and the prior p(θ). However, it is extremely challenging
to choose an efficient proposal distribution for a nonlin-
ear and high-dimensional model [43]. Therefore, in this
paper, we adopt a particle MCMC algorithm to tackle

Table 1 Descriptions and values of model parameters and
variables

Parameter Description Values

yt Output of the data-driven
stochastic model at time step t

CISDCP

xt Output of the weather-driven
model at time step t

Hidden

T Average temperature MODIS

R Average rainfall TRMM

fu Number of degree days needed for
mosquito maturation

36.5 [40]

gu Threshold below which
gonotrophic development ceases

9.9 [40]

γ Probability of a mosquitoes
surviving through a gonotrophic
cycle

0.5 [40]

fn Number of degree days required
for parasite development

105 [33]

gn Threshold below which parasite
development ceases

18◦C [40]

h Human blood index 0.7 [40]

g Per-capita daily death rate of a
mosquito

u Gonotrophic cycle length Equation 8

a Human feeding rate a = h/u

p Probability of a mosquito survive
through one whole day

p = e−g = γ 1/u

n Sporogonic cycle length Equation 9

m Mosquito density per person m = 10R [40]

b Transmission efficiency from
mosquito to human

c Transmission efficiency from
human to mosquito

β Mutual transmission efficiency:
β = bc

To be estimated

r Human recovery rate To be estimated

α1 Coefficient of the weather-driven
model

To be estimated

α2 Magnitude of the seasonal effect To be estimated

ω Seasonality parameter To be estimated

σ Variance of observation noise To be estimated

1CISDCP: China Information System for Disease Control and Prevention (http://
www.phsciencedata.cn/Share/)
2MODIS: Moderate Resolution Imaging Spectroradiometer (https://modis.gsfc.nasa.
gov/)
3TRMM: Tropical Rainfall Measuring Mission (https://gpm.nasa.gov/trmm)

this challenge, which is a combination of the MCMC and
Sequential Monte Carlo (SMC) algorithms.
With respect to the PMCMC algorithm, the parameters

in θ∗ are first sampled from a proposal density q(θ∗|θ) and
then x∗

1:τ is indenpendently sampled from p(x1:τ |y1:τ , θ∗).
The new values of x∗

1:τ and θ∗ will be accepted with the
rate [44, 45]:

http://www.phsciencedata.cn/Share/
http://www.phsciencedata.cn/Share/
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://gpm.nasa.gov/trmm
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AR = min
(
p̂(y1:τ |θ∗)p(θ∗)
p̂(y1:τ |θ)p(θ)

q(θ |θ∗)
q(θ∗|θ)

), 1
)
, (11)

where the marginal likelihood p̂(y1:τ |θ∗) is estimated
through the SMC algorithm. Moreover, the SMC algo-
rithm can also provide an approximation for p(x1:τ |y1:τ , θ)

by propagating particles based on the weather-driven
model. The detailed MCMC procedure is shown in
Algorithm 1.
As one kind of particle filtering algorithm, the SMC

algorithm allows us to numerically approximate the dis-
tribution of p(x1:τ |y1:τ , θ) by simulating the unknown tra-
jectories of the variable xt from the weather-driven model
[45]. Given a number of J particles, the key idea behind
the particle filtering is to update each particle sequence
through time so that the weighted particles provide an
approximation for p(x1:t|y1:t , θ) at any time t. First, the
state of each particle xjt at time t is simulated directly from
the weather-driven model (Eq. 6). Then, each particle is
filtered according to the observation model and assigned
a weight wj

t :

wj
t = p

(
yt|xjt , θ

)
∼ N (α1xt +α2| sin(ωπ ∗ t)|, σ), (12)

which is simply the probability of observing yt given
the state of the particle xjt and the estimated param-
eters (Eq. 7). By averaging the weight of all particles,

Algorithm 1 The PMCMC algorithm
Input: The number of iterations M; the prior p(θ), and

the proposal q(θ∗|θ)

Output: The samples of x1:τ and θ

1. Initializem = 0
2. Initialize θ(0)
3. Run the SMC algorithm to sample x1:τ (0) based on
the weather-driven model and estimate the marginal
likelihood p̂(y1:τ |θ(0)) based on Equation 14
form ≤ M do

1. Sample θ∗ from a proposal density q(θ∗|θ(m−1))
2. Run the SMC algorithm to sample x∗

1:τ based on
the weather-driven model and estimate the marginal
likelihood p̂(y1:τ |θ∗) based on Equation 14

3. Generate a random munber μ ∈[ 0, 1]
if μ ≤ min(

p̂(y1:τ |θ∗)p(θ∗)
p̂(y1:τ |θ(m−1))p(θ(m−1))

q(θ(m−1)|θ∗)
q(θ∗|θ(m−1)) , 1)

then
θ(m) ← θ∗
x1:τ (m) ← x∗

1:τ
else

θ(m) ← θ(m − 1)
x1:τ (m) ← x1:τ (m − 1).

end if
end for

we can approximate the conditional marginal likelihood
p(yt|yt−1, θ) as

p(yt|yt−1, θ) = 1
J

J∑
j=1

wj
t . (13)

Accordingly, the likelihood of observing the entire time
series given θ can be approximated as

p̂(y1:τ |θ) =
τ∏

t=1
p(yt|yt−1, θ). (14)

Such an approximation is further used to evaluate the
acceptance probability (Eq. 11) in the MCMC procedure.

One-step-ahead prediction
Once the model parameters θ are inferred based on time
series of malaria prevalence, we can make a one-step-
ahead prediction about future malaria infections. Suppose
we have time series of malaria infections y1:t at time t.
The objective of the one-step-ahead prediction is to esti-
mate the number of malaria infections ŷt+1 at t + 1. To
achieve this, we first calculate and sample the hidden state
x̂t based on the stochastic model. Then, the hidden state
x̂t+1 at the next time t + 1 can be estimated based on
Eq. 6 using the set of estimated model parameters θ̂ . In
this case, the value of yt+1 can be predicted as

ŷt+1 = α̂1x̂t+1 + α̂2| sin(ω̂π ∗ (t + 1))|, (15)

where α̂1, α̂2, and ω̂ are estimated as the mean values of
the sampled parameters based on the PMCMC algorithm.

Data collection and experimental settings
In this paper, we carry out case studies on the inference
and prediction of malaria transmission dynamics in two
counties, Tengchong and Longling, in Yunnan province,
China. We use daily P. vivax cases in Tengchong and
Longling from January 1, 2007, to December 31, 2010,
which can be obtained from the China Information Sys-
tem for Disease Control and Prevention by application
(CISDCP: http://www.phsciencedata.cn/Share/). Taking
into consideration the incubation period of P. vivax, we
aggregate the daily P. vivax cases every 16 days during the
case study. In this case, there are 23 time periods every
year. To train the proposed stochastic model, we use the
prevalence data from January 1, 2007, to December 31,
2009. Then, we evaluate the performance of our model
by predicting the number of P. vivax infections in 2010.
Because there are only very few cases in the first three
months in 2010, we start our prediction from April 2010.
The value of VCAP is calculated based on the dynam-

ically changing temperature and rainfall in the proposed
model. By carefully selecting representative areas of Teng-
chong and Longling, we collect temperature data from

http://www.phsciencedata.cn/Share/
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the website of Moderate Resolution Imaging Spectrora-
diometer (MODIS: https://modis.gsfc.nasa.gov/), which
are available on an 8-day basis at 1 km spatial resolu-
tion. The average temperature over the area is used to
estimate VCAP. Meanwhile, we collect the rainfall data
from the website of Tropical Rainfall Measuring Mission
(TRMM: https://pmm.nasa.gov/trmm), which are avail-
able on a three-hour basis at 0.25 deg spatial resolution.
The cumulative rainfall is used to estimate VCAP. Finally,
in the nonlinear stochastic model, both xt and yt are
calculated as proportions out of the population size in
Tengchong and Longling, respectively. Based on the sixth
national census of China in 2010, there are 644 765 people
in Tengchong and 277 319 people in Longling.
Some model parameters are set in advance based on

existing studies as shown in Table 1, while other param-
eters θ = {β , r,α1,α2,ω, σ } need to be inferred using the
PMCMC algorithm. According to the Bayesian inference
method, to reduce the influence of the priors on the
posterior of θ , it is better to assume the uninformative
prior distributions. Therefore, in our case studies, we
assume the parameters in θ are independent of each
other, and set the prior distribution of each parameter as
an uninformative uniform distribution. Through careful
testing, we set β ∼ U(0, 1), r ∼ U(0, 1), α1 ∼ U(0, 9),
α2 ∼ U(0, 15), 1/ω ∼ U(20, 28), and σ ∼ U(8, 20). The
initial value of each parameter is randomly generated
based on its prior distribution. Moreover, with careful
pre-testing, the proposal distribution of each param-
eter is set as follows: q(β∗|β) = norm(β∗|β , 0.0022),
q(α∗

1 |α1) = norm(α∗
1 |α1, 0.3), q(α∗

2 |α2) =
norm(α∗

2 |α2, 0.32), q(r∗|r) = norm(r∗|r, 0.016),
q((1/ω)∗|1/ω) = norm((1/ω)∗|1/ω, 0.23), and
q(σ ∗|σ) = norm(σ ∗|σ , 0.018). Since the interval of each
prior covers almost all possible values of corresponding
parameter, such settings have little effect on the inference
results as long as the number of iterations is enough. In
our experiments, the PMCMC algorithm is run for 500
000 iterations, following a discarded burn-in of 50 000
iterations. Finally, the posterior of each parameter is built
upon the last 90% iterations.

Results
Parameter inference
The set of model parameters θ = {β , r,α1,α2,ω, σ } are
inferred by sampling the values of each parameter that
approximate the posterior distribution p(θ , x1:τ |y1:τ ). Ini-
tially, the prior of each parameter is set to be a uniform
distribution. During the updating process of the PMCMC
algorithm, a set of parameter values will be sampled
through the Monte Carlo simulation. Figures 1 and 2
show estimated posterior density for all unknown param-
eters in the data-driven stochastic model based on time
series of malaria prevalence in Tengchong and Longling,

respectively. The more the density conforms to the nor-
mal distribution with small variance, the more stable the
parameter is estimated. It can be observed that the his-
tograms of both mutual transmission efficiency β and
human recovery rate r are subject to the normal distri-
bution with small variance. Moreover, the estimates of β

and r in both counties are very similar. The results indi-
cate that our model can provide better estimations for
transmission-related parameters. Besides, the parameter
α1 can also be well estimated in both counties, indicating
a strong correlation between the real-world observations
and the data-driven malaria transmission model. In other
words, it is reasonable to model the dynamics of malaria
transmission based on the notions of VCAP and EIR by
involving dynamically changing meteorological factors.
With respect to the seasonality-related parameter, 1/ω

reflects the cycle of peak values in themodel. It is expected
that the value of 1/ω should be around 23 because each
calendar year is separated into 23 time windows in our
case study. For the Tengchong county, the result in Fig. 1
shows that the estimate of 1/ω approximates to a nor-
mal distribution, indicating a stable estimation. However,
the mean value is slightly larger than 23. Such an esti-
mate is acceptable because the number of malaria cases
is relatively small during several time windows across two
consecutive calendar years. Moreover, since only three
years of prevalence data are used for training the proposed
model, no precise seasonal period can be found from real
data. For the Longling county, the result in Fig. 2 shows
that the estimate of 1/ω oscillates between the two val-
ues. The reason is that there are multiple peaks in the
time series of Longling in a year (the blue line in Fig. 3),
which may affect the estimation of 1/ω. However, these
peaks cannot reflect the real seasonality of P. vivax infec-
tions in Longling because the number of P. vivax cases
in Longling is much smaller than that in Tengchong. The
increase or decrease of a small number of cases will cause
severe fluctuations in the time series, which may disrupt
the seasonality of the time series.
The estimates of σ in both counties are relatively large

(see Figs. 1 and 2). The reason is that in the stochastic
model, we assume that the number of imported malaria
cases is subject to a strict periodic function. While in
reality, imported cases are caused by human movement
and many other factors, which are too complicated to
be predicted. For the Tengchong county, the estimates
of parameter α2 fluctuate in the region [ 0, 20], and the
samples of σ are relatively large and vary in the region
[ 10, 12]. While for the Longling county, the estimate of
α2 is relatively stable and the samples of σ vary in the
region [ 2.5, 4]. The reason is that the number of P. vivax in
Tengchong is much larger than that in Longling, and the
seasonality ofmalaria cases in Tengchong ismore obvious.
The results suggest that in order to build more accurate

https://modis.gsfc.nasa.gov/
https://pmm.nasa.gov/trmm
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Fig. 1 The estimated posterior density for all unknown parameters in the data-driven stochastic model using time series of malaria prevalence in
Tengchong county. The horizontal axis represents the sampled values of each parameter based on the PMCMC algorithm, and the vertical axis
represents the frequency at which the corresponding values appear in all samples

Fig. 2 The estimated posterior density for all unknown parameters in the data-driven stochastic model using time series of malaria prevalence in
Longling county. The horizontal axis represents the sampled values of each parameter based on the PMCMC algorithm, and the vertical axis
represents the frequency at which the corresponding values appear in all samples
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Fig. 3 An illustration of the fitting results of the proposed data-driven stochastic model and the weather-driven model. The fitting results of
Tengchong are shown on the left and Longling on the right. The blue line shows the real number of P. vivax cases from January 1, 2007 to
December 31, 2009. The gray shadow covers the 95% percentiles of output samples y1:τ based on the data-driven stochastic model, and the red line
represents their average value. The light green line represents the estimation of α1x1:τ based on the weather-driven model

models, one of the most important issues is to investi-
gate the impact factors that are related to the number of
imported cases.

Fitting results
The fitting results of the data-driven stochastic model and
the weather-driven model are shown in Fig. 3. Specifi-
cally, the data-driven model is trained using the PMCMC
algorithm based on time series of P. vivax prevalence
data in Tengchong and Longling from January 1, 2007, to
December 31, 2009 (i.e., the blue line in Fig. 3). Accord-
ing to the PMCMC algorithm, a sampled sequence of
the hidden state x1:τ will be generated at each iteration.
Following a discarded burn-in of 50 000 iterations, we
sample x1:τ every 20 iterations from the last 90% itera-
tions, and calculate corresponding y1:τ with the sampled
model parameters. The gray shadow shows the region of
95% percentiles of output samples y1:τ , and the red line
represents the average value of the output samples. It can
be observed that the proposed stochastic model can well
fit the real-worldmalaria prevalence data in both counties.
Moreover, to evaluate the effect of meteorological factors
on the P. vivax transmission, we also plot the estimation
results of the weather-driven transmission model α1x1:τ
(the light green line in Fig. 3). It can be observed that
the weather-driven model can reflect the trend of P. vivax
infections in both counties, which verifies the important
role of temperature and rainfall in malaria transmission
dynamics.
We further evaluate the performance of the proposed

models by examining the fitting results in Tengchong
and Longling over the three years. Table 2 shows the

comparison between the weather-driven model and the
data-driven model in terms of the root-mean-square error
(RMSE), the mean squared error (MSE), the mean abso-
lute error (MAE), and the R-squared value. The results
indicate that by including a periodic function to reflect
the seasonality of malaria cases, the data-driven model
can achieve better performance than the weather-driven
model. Moreover, the data-driven model can better inter-
pret the time series of P. vivax cases in Tengchong with
R2 = 0.9323. However, even though the values of RMSE,
MSE, and MAE of Longling are much smaller than that
of Tengchong, the R2 value of Longling is smaller with
R2 = 0.7609. The reason is that the number of reported
cases in Longling is much less than that in Tengchong. A
small change in the number of reported cases will result
in large fluctuations in the time series of Longling county.
Therefore, it is relatively difficult to make an accurate
prediction because the periodicity is easily disturbed (see
Fig. 2). Figure 4a and c illustrate the histogram of abso-
lute fitting errors of the data-driven stochastic model in
both counties over the three years. It can be observed that
most fitting errors are very small, and the error histogram
is subject to normal distributions with a mean of zero. The
results indicate that the proposed data-driven stochastic
model is well trained by the PMCMC algorithm. Because
the number of cases varies dramatically, we further ana-
lyze the relative fitting errors of the data-driven model
from January 1, 2007, to December 31, 2009. As shown in
Fig. 4b and d, the blue bars represent the absolute values
of relative fitting errors, and the blue line is the real num-
ber of P. vivax cases over time. An interesting observation
is that the relative errors of our model are always small
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Table 2 The fitting results of the proposed models in
Tengchong and Longling

County Model RMSE MSE MAE R-squared

Tengchong
Weather-driven
model

9.2986 86.4642 7.9169 0.8129

Data-driven
model

5.2562 27.6277 3.5287 0.9323

Longling
Weather-driven
model

3.0427 9.2577 2.3347 0.6003

Data-driven
model

2.1368 4.5659 1.6566 0.7609

1RMSE: root-mean-square error; MSE: mean squared error; MAE: mean absolute error

unless the real number of P. vivax cases changes unexpect-
edly. In other words, it is those sudden changes in time
series of malaria cases that result in the fitting errors of
the proposed model.

Prediction results
Because time series of malaria prevalence data in both
counties have periodic characteristics, we evaluate the
forecasting capability of the one-step-ahead prediction
model by comparing it with the seasonal autoregres-
sive integrated moving average (SARIMA) model. A
seasonal ARIMA model is formed by including addi-
tional seasonal terms in the ARIMA, which involve back-
shifts of the seasonal period. According to the SARIMA
model, the goal is to find optimal parameters of the
SARIMA(p, d, q)(P,D,Q, S) model. Here, p is the trend
autoregressive order, d is the trend difference order, and
q is the trend moving average order. Meanwhile, P, D,
and Q are seasonal autoregressive order, seasonal differ-
ence order, and seasonal moving average order, respec-
tively. In our case study, S = 23 is the number of time
windows for a single seasonal period. Therefore, for the
SARIMA model, there are a large number of combina-
tions of parameters (p, d, q) and (P,D,Q). In our experi-
ments, we assume that the value of each parameter can
be taken from {0, 1}. Using the SARIMAX function in
the statsmodels package of Python, we try out all com-
binations of these parameters and choose the best fitting
model based on the Akaike information criterion (AIC).
In doing so, the model SARIMA(1, 1, 1)(1, 1, 0, 23) are
selected with the smallest AIC, which is further used to
make predictions on the number of P. vivax infections in
2010. Figure 5 shows the comparison of prediction results
between the one-step-ahead prediction model and the
SARIMA model in Tengchong and Longling, respectively.
It can be observed that comparing with the one-step-
ahead model, the peak values predicted by the SARIMA
model (the green curves in Fig. 5a and c) is much larger
than the real number of P. vivax cases. The reason is that
the SARIMA model makes statistical predictions based

on the trend and seasonality of historical periodic events,
which do not take into account the impact of risk fac-
tors. On the contrary, by considering dynamically chang-
ing meteorological factors in the data-driven stochastic
model, the one-step-ahead prediction model can achieve
better prediction results in both counties even though the
number of P.vivax cases is relatively small in 2010 (the red
curves in Fig. 5a and c). Accordingly, the prediction errors
of the one-step-ahead prediction model are much smaller
than that of the well-chosen SARIMA model (see Fig. 5b
and d).

Discussion
The natural malaria transmission depends on the com-
plex interactions among three epidemiological entities:
the parasite, the host, and the transmission agent (i.e.,
mosquitos). The transmission dynamics can also be
affected by various factors, such as biological, human
behavioral, demographic, socioeconomic, environmental
and ecological factors, ranging from amicroscopic scale to
a macroscopic scale. For example, biological factors (e.g.,
acquisition of immunity) at the microscopic scale may
determine the vulnerability of an individual to infection
[46], while meteorological factors (e.g., temperature and
rainfall) at the macroscopic scale are instrumental to the
gonotrophic cycle length of mosquitoes [40]. More impor-
tantly, most impact factors change over time. Therefore, to
quantitatively analyze the dynamics of malaria transmis-
sion, it would be necessary to involve various dynamically
changing impact factors into the model. The proposed
data-driven stochastic model adopts the notion of VCAP
and EIR to characterize the impact of meteorological
and demographic factors on the risk of malaria transmis-
sion, which makes it possible to quantitatively assess and
predict the patterns of malaria transmission.
In reality, the exact values of many transmission-related

parameters are very difficult to obtain through field
study. For example, to measure the human blood index,
the front-line staffs are required to regularly work as
baits to count the number of bites by mosquitoes [37].
Even though, there are many other transmission-related
parameters that are impossible to directly obtain, such
as the mutual transmission efficiency β and the human
recovery rate r. By training the data-driven stochas-
tic model based on time series of malaria prevalence
data, the transmission-related parameters β and r can
be inferred approximately. The case studies in Teng-
chong and Longling have shown that the estimated value
of mutual transmission efficiency β is in the region
[ 0.015, 0.040] and the human recovery rate r falls into the
region [ 0.20, 0.30]. Such estimates could help build more
accurate malaria transmission models, and further, eval-
uate the force of infection and/or the basic reproduction
number.
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Fig. 4 An illustration of the fitting errors of the data-driven stochastic model. The model is trained using the PMCMC algorithm based on time series
of P. vivax prevalence data in Tengchong and Longling from January 1, 2007, to December 31, 2009. a The histogram of absolute fitting errors in
Tengchong; b The absolute values of relative fitting errors in Tengchong over the three years; c The histogram of absolute fitting errors in Longling;
and (d) The absolute values of relative fitting errors in Longling over the three years

In the past, many statistical methods have been pro-
posed to forecast the potential disease infections, such as
the linear regression model, generalized additive model,
and SARIMA. However, such methods focus purely on
modeling the linear or nonlinear relationships between
various impact factors and time series of historical disease
prevalence data. They do not aim to unveil the underlying
dynamics of disease transmission, and hence are limited in
making an accurate prediction about potential infections
when the transmission situations change dramatically. For
example, in Fig. 5, the prediction results in Tengchong and
Longling have shown that the SARIMA model inclines to
overestimate the number of malaria infections in March
and April due to the seasonality in the model. On the

contrary, the proposed data-driven stochastic model can
make a better prediction by modeling the dynamics of
malaria transmission with dynamically changing impact
factors and malaria prevalence data.
Although the proposed models can reveal certain

dynamical patterns of malaria transmission, there are still
several limitations in this work. First, although the values
of two transmission-related parameters can be inferred
based on the time series of historical prevalence data,
many other parameters are still surveyed from literature.
In the future, specific investigations are expected to be
conducted in Tengchong and Longling, to reveal the rela-
tionships between environmental/meteorological factors
and other transmission-related parameters (e.g., mosquito
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Fig. 5 The comparison of prediction results between the one-step-ahead prediction model and the SARIMA model. a The predicted number of P.
vivax infections in Tengchong; b The absolute prediction errors of Tengchong; c The predicted P. vivax infections of Longling; and d The absolute
prediction errors of Longling. The red line presents the results of the one-step-ahead prediction model; the green line represents the results of the
SARIMA model; the blue line is the real number of P. vivax cases

density per person). Second, in this paper, we simply
assume the seasonality of the number of imported cases,
which results in the large value of σ in Figs. 1 and 2.
To further improve the prediction accuracy of the pro-
posed model, it is expected to investigate the causality of
imported cases at different locations, especially, the pat-
terns of human movement [12, 24, 25]. Third, the VCAP
in this paper is derived from the Macdonald model, where
many processes, such as the relapses episodes of P. vivax
and the time lag introduced by parasite incubation, are
not considered. To develop a more comprehensive model,
it would be helpful to take into consideration such criti-
cal dynamic processes. Fourth, the predictive ability of our

model will decrease when the number of malaria cases is
small. As shown in Fig. 3 and Table 2, the ability of our
model to predict malaria infections in Longling is worse
than that of Tengchong. In the future, more attention
should be paid on assessing malaria transmission risks
during the phase of pre-elimination. Finally, as more and
more prevalence data are available, comparative studies
can be conducted to reveal the similarities and differences
in malaria transmission at different geographic locations.

Conclusion
In this study, we have proposed a data-driven nonlin-
ear stochastic model to (i) investigate the underlying
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malaria transmission dynamics, and (ii) predict the num-
ber of potential infections. Specifically, we have taken
into account the impact of both meteorological factors on
disease transmission and seasonal patterns of imported
cases, where the notions of VCAP and EIR is used to
relate the risk of malaria transmission to the dynamically
changing temperature and rainfall. Concerning unknown
parameters in the model, we have presented a particle
MCMC algorithm to estimate model parameters based on
time series of malaria prevalence. By applying our model
to P. vivax transmission in Tengchong and Longling, Yun-
nan province, China, we have demonstrated its ability
to make a reasonable estimation for model parameters,
which help better understand the transmission dynamics
of P. vivax. Further, based on the well-trained model, we
have evaluated the forecasting capability of our one-step-
ahead prediction method by making a comparison with
the ASRIMA model in both counties.
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