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Abstract 

Background: Ticks are hematophagous parasites that transmit an extensive range of pathogens to their vertebrate 
hosts. Ticks can destroy invading microorganisms or alleviate infection via their rudimentary but orchestrated innate 
immune system. Antimicrobial peptides (AMPs) are important components of tick innate immunity. Among these 
humoral effector molecules, defensins are well-studied and widely identified in various species of Ixodidae (hard ticks) 
and Argasidae (soft ticks). This review was aimed at presenting the characterization of tick defensins from structure-
based taxonomic status to antimicrobial function.

Main text: All published papers written in English from 2001 to May 2022 were searched through PubMed and Web 
of Science databases with the combination of relevant terms on tick defensins. Reports on identification and charac-
terization of tick defensins were included. Of the 329 entries retrieved, 57 articles were finally eligible for our scoping 
review.

Tick defensins mainly belong to the antibacterial ancient invertebrate-type defensins of the cis-defensins superfamily. 
They are generally small, cationic, and amphipathic, with six cysteine residues forming three intra-molecular disulfide 
bonds. Tick defensins primarily target membranes of a variety of pathogens, including Gram-positive and Gram-neg-
ative bacteria, fungi, viruses, and protozoa. Since tick defensins have a high degree of variability, we summarize their 
common biological properties and enumerate representative peptides. Along with the various and potent antimicro-
bial activities, the role of tick defensins in determining vector competence is discussed.

Conclusions: Due to their broad-spectrum antimicrobial activities, tick defensins are considered novel candidates or 
targets for controlling infectious diseases.
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Background
Ticks are ectoparasitic arthropods that obligatorily 
suck blood from vertebrate hosts [1]. To date, more 
than 950 tick species have been identified, which 
are mainly divided into two families: Ixodidae (hard 
ticks) and Argasidae (soft ticks) [2, 3]. Ticks are sec-
ond only to mosquitoes as vectors of pathogens in 
humans and can transmit multiple pathogens compris-
ing bacteria, fungi, viruses, protozoa, and nematodes. 
The tick-borne diseases, such as Lyme disease, tick-
borne encephalitis, human granulocytic anaplasmosis, 
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rickettsioses, babesiosis, and African swine fever, pose 
an increasing threat to public health and bring enor-
mous economic losses to livestock production globally 
[4].

The pathogens acquired within the blood meal from 
infected hosts must evade tick immune responses on 
their route through the tick body. The initial organ 
is the tick midgut, where the pathogen interacts with 
resident microbiota and cytotoxic molecules. Then 
the infectious agent colonizes to the gut epithelium 
followed by migrating to the salivary glands through 
hemocoel filled with hemolymph. Notably, the tick 
salivary glands produce saliva to return excess water 
and ions to the host for concentrating the blood meal. 
Thus, the tick saliva is a vehicle for the pathogen to be 
successfully transmitted to the next host in the subse-
quent feeding stage. Moreover, the saliva provides var-
ious bioactive factors which modulate host hemostasis 
and immune responses, facilitating pathogen acquisi-
tion. Some microorganisms can also infect tick ovaries 
and thereby gain access to progeny through transovar-
ial transmission [5, 6].

Like other invertebrates, ticks defend themselves 
with a primitive innate immune system consisting of 
humoral and cellular responses. The cell-mediated 
action is represented by phagocytosis, encapsulation, 
and nodulation; while the humoral defense depends on 
a variety of humoral factors such as pattern recogni-
tion receptors, complement-related molecules, lectins, 
and antimicrobial peptides (AMPs) [7]. The well-stud-
ied and best-known AMP is defensin, a potent effector 
element of innate immunity. Defensins are ubiqui-
tously expressed in a wide range of eukaryotic organ-
isms involving vertebrates, invertebrates, plants, and 
fungi. They are deeply diverse in terms of sequence 
but are mostly small (less than 10  kDa), cysteine-
rich, cationic, and amphipathic [8]. It has been over 
two decades since tick defensins were firstly reported 
in the soft tick, Ornithodoros moubata, and the hard 
tick, Dermacentor variabilis [9, 10]. Tick defensins are 
involved in the tick immune responses with the mid-
gut, hemolymph, and salivary glands. Despite inad-
equate information dispersed in many tick species, 
they have served as promising templates for develop-
ing new anti-infective agents due to their prominent 
antimicrobial properties. Extensive microorganisms, 
especially antibiotic-resistant bacteria and tick-borne 
pathogens, can be killed by tick defensins. Here we 
present the general biological characterization of tick 
defensins with deeply-investigated representatives, 
shedding light on their function in tick immunity and 
potential for medical application.

Methods
This scoping review was conducted adapting the guide-
lines of Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) [11].

Search strategy
We performed a literature search by employing PubMed 
and Web of Science databases, covering all published 
papers in English dated from 2001 to 2022. The databases 
were explored with the following combination of terms: 
(tick* OR Ixodidae OR Argasidae) AND (defensin* OR 
defensin-like OR “antimicrobial peptide*”). We used end-
note software for the management of references. The last 
search was executed on 31 May 2022.

Inclusion criteria and exclusion criteria
The inclusion criteria involved: studies that reported the 
discovery and identification of defensins and defensin-
like peptides in the tick and studies characterizing the 
function or mechanism of tick defensins in their origi-
nal or truncated forms. We excluded annotations for tick 
defensins in transcriptomic or proteomic analyses that 
lack further investigation.

Data extraction and analysis
We classified the articles in line with the source of 
defensins in tick species. And successive and systematic 
researches with the same defensin were grouped. The 
information from common traits to individual features of 
tick defensins was extracted and summarized.

Results
Initially, the database searching yielded a total of 329 
results, of which 198 articles were screened out after 
eliminating duplicates. According to the inclusion cri-
teria, 122 and 19 records were discarded through rough 
screening for title or abstract and thorough assessment 
for full text, respectively. At last, 57 articles were eligible 
for our scoping review (Fig. 1).

Taxonomic status of tick defensins from a structural 
perspective
Defensins are classified into two evolutionarily independ-
ent superfamilies, the cis- and trans-defensins, by com-
bining primary sequence alignment, secondary structure 
orientation, disulfide topology, and tertiary structure 
similarity. Convergent evolution has led to massive 
structural and functional similarities between these two 
superfamilies [12, 13]. On the other hand, it has been 
proposed that cis- and trans-defensins might share a 
common ancestor through one amino acid deletion 
mutation [14]. In the cis-defensins, the two most con-
served disulfides from the C-terminal β-strand orient in 
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the same direction and bond to the same α-helix. Contra-
rily, in the trans-defensins, the two analogous disulfides 
point in opposite directions, thus bonding to different 
secondary structure elements [12, 13]. The presence of 
disulfide bonds confers a common characteristic to the 
defensins: high stability to temperature, pH, and proteol-
ysis [13, 15, 16]. Further, the cis-defensins are comprised 
of CSαβ-type (cysteine-stabilized α-helical and β-sheet) 
defensins from invertebrates, plants, and fungi, whereas 
trans-defensins generally contain vertebrate α-, β-, θ-, 
and invertebrate big defensins [12].

All members of CSαβ-type defensins contain a con-
served motif stabilized by disulfide bridges involving one 
α-helix and one β-sheet of two antiparallel strands. The 
α helix spanning the CXXXC sequence (X, any amino 
acid) is anchored to the second β-strand having the CXC 
sequence via two disulfide bonds. The third disulfide 
bond links the N-terminal to the first β-strand [17, 18]. 
Previous studies on the structure–activity relationship 
have indicated that the functional region of defensins is 
predominantly located in the C-terminal β-sheet domain, 
referred to as the γ-core motif [19, 20]. Based on differ-
ences in N-terminal sequences, CSαβ-type defensins are 
grouped into three subclasses: the antibacterial ancient 
invertebrate-type defensins (AITDs), antibacterial 

classical insect-type defensins (CITDs), and antifungal 
plant/insect-type defensins (PITDs) [21]. Commonly, the 
AITDs have a short n-loop, and a longer n-loop is the 
feature of CITDs, while the PITDs fold the N-terminal 
into an extra β-strand [20]. The CITDs are discovered 
in insects of phylogenetically recent orders. Conversely, 
the AITDs keep a more distant phylogenetic distribu-
tion consisting of primitive insects (e.g., the paleopteran 
insect Aeschna dragonfly), arachnids (spiders, scorpi-
ons, and ticks), and bivalvia (mussels and oysters). The 
PITDs are mainly derived from plants and Drosophila 
[20, 22]. Briefly, tick defensins generally belong to AITDs 
of CSαβ-type defensins in the cis-defensins superfamily 
[23]. Predicated tertiary structures of three representa-
tive tick defensins all have an α-helix at the N terminal 
and antiparallel β strands to the C-terminal (Fig. 2). Iden-
tical with other CSαβ-type defensins, the γ-core motif of 
tick defensins is functional, which we will discuss later 
with specific examples.

Common biological properties of tick defensins
Tick defensins are synthesized as prepropeptides of 
approximately 8  kDa which generally contain a signal 
peptide with a highly conserved furin cleavage motif 
(RVRR) for the release of the mature peptide from the 

Fig. 1 Flow diagram presenting the screening process
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C-terminal [7]. Mature defensins typically consist of 
about 40 residues featuring six cysteine residues that 
form three intra-molecular disulfide bridges linked in 
a Cys1-Cys4, Cys2-Cys5, and Cys3-Cys6 pattern [24]. 
Most defensins carry a full positive net charge though 
some anionic peptides have also been reported [25, 26]. 
Many stimuli related to microbial invasions, such as 
injury, infection, and blood-feeding, induce the secre-
tion of these protective substances. Defensins were also 
observed to be up-regulated after molting [27]. A range 
of tissues in ticks, such as midgut, hemolymph, salivary 
glands, ovary, and fat body, express defensins, while the 
distribution of defensins appears to be either tissue-
specific or ubiquitous [26]. Tick defensins have a broad 
spectrum of antimicrobial activity that majorly attack 
Gram-positive (Gram+) bacteria. Some isoforms are also 
active against Gram-negative (Gram−) bacteria, fungi, 
viruses, and protozoa. They universally have low toxicity 
toward mammalian cells at concentrations that exhibit 
their antimicrobial effects [28].

It is commonly assumed that the antimicrobial activity 
of cationic AMP is exerted by binding to the negatively 
charged microbial membranes through electrostatic 
forces, which leads to the formation of pores in the 
membranes and subsequently ends in cell lysis. At pre-
sent, there are at least three generally accepted mod-
els used to explain membrane permeabilization: the 
toroidal-pore model, the carpet model, and the barrel-
stave model (Fig.  3) [29]. Similar to these descriptions, 
the primary action mode of tick defensins is membrane 
permeabilization. Transmission electron microscopy of 
defensin-treated Micrococcus luteus showed significant 
lysis of the cytoplasmic membrane resulting in leakage 

of essential cellular contents [30]. The ability of defensins 
to penetrate membranes of Escherichia coli and Bacillus 
subtilis was observed in studies utilizing fluorescently 
labeled peptides [31]. Membrane disruption was also 
revealed in Toxoplasma parasites exposed to a potent 
antimicrobial motif in defensin from hard tick Haema-
physalis longicornis [32]. The interaction with peripheral 
molecules of organisms is a prerequisite to approaching 
the membrane. For example, the γ-core of the tick defen-
sin DefMT3 was recruited by membrane phospholipids 
in Fusarium graminearum, including phosphatidylserine 
(POPS), phosphatidic acid (POPA), and phosphatidyl-
glycerol (POPG) [33]. And the active peptides derived 
from the OsDef2 defensin had a strong affinity towards 
β-1,3-glucans or mannose residues, the components of 
cell wall polysaccharides [34]. However, it is speculated 
that the membrane is not the only target of tick defensin, 
because multiple anionic targets inside microbial cells 
like nucleic acids and enzymes may interact with cationic 
peptides (Fig.  3). The gel retardation assay showed that 
truncated defensins caused an inhibition of the migra-
tion of E.  coli plasmid DNA (pDNA) at molar charge 
ratios (pDNA: peptide) close to or above 1:1, suggesting 
the possibility of the formation of ionic bonds between 
negatively charged DNA and positively charged peptides 
[31]. Currently, there are large gaps in the knowledge of 
mechanisms of tick defensin and further investigations 
are needed to elucidate whether there are specific mem-
brane receptors and whether there are potential intracel-
lular targets as defensins translocate to the cytoplasm.

Defensins and defensin-like peptides have been char-
acterized in many tick genera including Ornithodoros 
in the soft ticks family, Amblyomma, Dermacentor, 

Fig. 2 Predicated tertiary structures of representative defensins in A Ixodes ricinus (AIR77174), B Dermacentor variabilis (AAO24323), and C 
Ornithodoros moubata (BAB41028) based on the template 2Ir5.pdb, 5xa6.pdb, and 2ru0.pdb respectively using the Swiss-Model Protein Modeling 
Server (http:// swiss- model. expasy. org). The α-helixes and the β-sheets are indicated in purple and green

http://swiss-model.expasy.org
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Haemaphysalis, Ixodes, and Rhipicephalus in the hard 
ticks family (Table 1) [9, 35–40]. Multigene families of 
defensins have been identified in I. scapularis, I. rici-
nus, and I. holocyclus [23, 26, 41]. Relevant genome and 
transcriptome datasets have provided abundant and 
valuable resources for expanding novel defensin fami-
lies and offered a glimpse of defensin diversity [42–45]. 
Phylogenetic analysis also indicates a diverse evolu-
tionary history among tick defensins and defensin-like 
peptides, which formed multiple clades, and defensins 
within the same tick genus were more likely to cluster 
together (Fig.  4). Out of considerations for a remark-
able degree of variability among tick defensins and 
coherence of experimental research, well-characterized 
tick defensins are summarized based on the origin in 
tick species.

Representatives of tick defensins
The family of tick defensins has been expanding since 
the first tick defensin was isolated in 2001. We pay atten-
tion to consecutive and gradually in-depth studies on tick 
defensins for presenting a thorough introduction and a 
brief research history of tick defensins.

Soft ticks defensin
Ornithodoros moubata defensin
Four defensin isoforms, A–D, divided into two types: 
defensin A, B, C and defensin D, were identified from the 
soft tick, Ornithodoros moubata [9, 46]. All four defen-
sin genes contained four exons and three introns. The 
similarity of all four isoforms was more than 78% for the 
mature portion. Particularly, the mature region of iso-
forms A, B, and C shared more than 89% homology [46]. 
All defensin genes were constitutively expressed in entire 
development stages, providing ticks with rapid resistance 
against infection. Isoform A, B, and C were expressed at 
higher levels in eggs and adult females, while D was only 
elevated in eggs. Tissue specificity showed that defensin 
A, B, and C were primarily expressed in the midgut, while 
defensin D expression was strongest in the fat body [47].

Chemically synthetic defensin A presented antibacte-
rial activity against Gram+ bacteria, including pathogenic 
Bacillus cereus, Enterococcus faecalis, and methicillin-
resistant Staphylococcus aureus, but not Gram− bac-
teria with low hemolytic activity [30]. Furthermore, the 
involvement of defensins in tick midgut immunity was 
investigated. Serving as the principal organ of blood meal 
storage and primary site of tick-pathogen interaction, the 

Fig. 3 Mode of action of tick defensins. A–C Similar to other AMPs, the membrane is the primary target of tick defensins. The three typical 
models proposed to illustrate membrane permeabilization are presented. In the toroidal-pore model (A), peptides are inserted between the lipid 
head groups to form a mixed pore. In the carpet model (B), peptides perform as a detergent causing the disruption of bilayer and eventually 
the formation of micelles. In the barrel-stave model (C), peptides aggregate to shape a bundle in the bilayer with a central lumen, like a barrel 
comprised of peptides as staves. D Intracellular components with negative charges like nucleic acids and enzymes are suspected to be the second 
targets of cationic tick defensins
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Table 1 Summary of tick defensins and defensin-like peptides

Tick families Tick species Name GenBank accession No References

Argasidae (soft ticks) O. moubata Defensin A BAB41028 [9]

O. moubata Defensin B BAB41027

O. moubata Defensin C BAC22074 [46]

O. moubata Defensin D BAC22073

O. papillipes Defensin A ACJ04425 [35]

O. papillipes Defensin B ACJ04426

O. papillipes Defensin D ACJ04427

O. puertoricensis Defensin A ACJ04429

O. puertoricensis Defensin B ACJ04430

O. rostratus Defensin A ACJ04428

O. tartakovskyi Defensin A ACJ04431

O. tartakovskyi Defensin B ACJ04432

O. turicata Defensin A QIG55621 [27]

O. turicata Defensin B QIG55622

O. turicata Defensin C QIG55623

O. turicata Defensin D QIG55624

Ixodidae (hard ticks) A. americanum Amercin ABI74752 [36]

A. hebraeum Defensin protein 1 AAR97290 [25]

A. hebraeum Defensin protein 2 AAR97291

D. marginatus Defensin ACJ04433 [35]

D. reticulatus Defensin ACJ04434

D. silvarum Ds-defensin AJG42673 [38]

D. silvarum Defensin-like protein QJD21999 [28]

D. variabilis Varisin A1 AAO24323 [58]

D. variabilis Defensin 2 AAO18363 [62]

H. longicornis Longicin BAD93183 [37]

H. longicornis Midgut defensin ABO28925 [69]

H. longicornis Salivaryglands defensin ABO28926

H. longicornis Longicornsin ACC95997 [70]

H. longicornis Male-specific defensin AEG42401 [73]

H. longicornis Hemolymph defensin BAX73647 [71]

H. longicornis Defensin DFS1 ATN39847 [74]

H. longicornis Defensin DFS2 ATN39848

I. holocyclus Holosin 1 QEO24725 [41]

I. holocyclus Holosin 2 QEO24726

I. holocyclus Holosin 3 QEO24727

I. holocyclus Holosin 4 QEO24728

I. holocyclus Holosin 5 QEO24729

I. persulcatus Persulcatusin BAH09304 [75]

I. ricinus Def1 AAP94724 [80]

I. ricinus Def2 ABC88432

I. ricinus Defensin MT3 AIR77174 [26]

I. ricinus Defensin MT4 AIR77175

I. scapularis Scapularisin-1 EEC08934 [23]

I. scapularis Scapularisin-3 EEC13914

I. scapularis Scapularisin-5 EEC08933

I. scapularis Scapularisin-6 EEC08935

I. scapularis Scapularisin-16 EEC17916

I. scapularis Scapularisin-19 EEC01374

I. scapularis Scapularisin-20 EEC17844 [23]

I. scapularis Scapularisin-22 EEC03289

I. scapularis Scasin-1 EEC18782

R. microplus Defensin AAO48943 [40]
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midgut is vulnerable to attack from ingested microbes. 
Moreover, the lack of extracellular digestive proteases 
and nutritious broth of blood proteins in the midgut 
lumen makes it a favorable environment for the survival 
and proliferation of microorganisms. Thus ticks must 
possess efficient antimicrobial systems in the midgut to 
eliminate infection or alleviate it to a tolerable degree [5, 
7]. Defensin genes were up-regulated following blood-
feeding and bacterial injection in the midgut [9, 46, 48]. 
Correspondingly, a rise in the peptide concentration in 
response to a blood meal was also demonstrated, and the 
four mature peptides were detected in the midgut con-
tents from engorged adult females, suggesting the secre-
tion of defensins into tick midgut lumen [46, 49]. The 

above pieces of evidence confirmed that defensin is a sig-
nificant component of tick midgut defense.

Ornithodoros savignyi defensin
In Ornithodoros savignyi, two defensin isoforms were 
found from the midgut designated as OsDef1 and OsDef2 
[50]. OsDef2 was used as a template for constructing 
shorter peptide Os that was derived from the carboxy-
terminal domain, and its analog Os-C with three Cys 
residues removed from the sequence. Both Os and Os-C 
showed antibacterial activities against both Gram+ and 
Gram− bacteria, whereas the parent OsDef2 was only 
active to Gram+ bacteria [50]. A similar result was 
observed with O. moubata defensin derivative [51]. In 

Table 1 (continued)
O.-Ornithodoros; A.-Amblyomma; D.-Dermacentor; H.-Haemaphysalis; I.-Ixodes; R.-Rhipicephalus

Fig. 4 Phylogenetic tree of tick defensins and defensin-like peptides. The evolutionary relationship was assessed using the Neighbor-Joining 
method in MEGA11 [91]. Genera and accession numbers of each aminoacid sequence used were indicated and bootstrap values over 50% were 
presented
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addition to antibacterial activity, Os and Os-C displayed 
antioxidant, anti-inflammatory, and anti-endotoxin prop-
erties, which allowed them to be identified as multifunc-
tional peptides [50, 52].

To minimize active peptides, Os peptide fragments, the 
overlapping sequences of 10 or 12 residues, were evalu-
ated for antibacterial activity. Os (3–12) and Os (11–22) 
were screened to be functional against Gram+ and 
Gram− bacteria. On the other hand, amidation was 
an approach to improving the antimicrobial ability of 
shorter derivatives since the enhanced activity of car-
boxyamidated Os(3–12)NH2 and Os(11–22)NH2 were 
manifested [53]. Additionally, Os, Os-C, and Os(11–22)
NH2 appeared as promising candidates against Candida 
albicans which is an opportunistic fungal pathogen that 
causes hospital-acquired infection commonly [34, 54]. 
The candidacidal action was fast-acting and complete 
killing was finished within 30–60 min at minimum fun-
gicidal concentrations of each peptide ranging from 6 to 
28 μmol/L [34].

Hard ticks defensin
Dermacentor variabilis defensin
Injection with Borrelia burgdorferi, the causative agent of 
Lyme disease, resulted in discovering a defensin termed 
varisin from the hemolymph of the American dog tick, 
Dermacentor variabilis [10, 55, 56]. The peptide of vari-
sin was only isolated in the hemolymph or hemocytes, 
though the transcript was amplified from midgut tissue 
[57]. The expression of varisin was detected between 
15  min and 18  h post-challenge. Defensin was thought 
to be stored in the hemocytes and released into the 
hemolymph upon microbial infection [58]. Despite little 
anti-Borrelia activity of varisin alone, its effect was dra-
matically increased in the presence of chicken lysozyme, 
reaching more than 65% killing within 1  h, which may 
be due to a synergistic action between these two pep-
tides [10]. To explore the role of varisin in the immune 
response, the authors used RNA interference (RNAi) to 
silence the expression of varisin gene and found that the 
bacteriostatic activity of the hemolymph was decreased 
by 2–4  fold, which supported varisin was primarily 
responsible for the hemolymph defense [59]. In another 
independent research, the protection of varisin against 
infection by the Gram− Anaplasma marginale, an intra-
cellular pathogen causing bovine anaplasmosis, was 
studied [60, 61]. However, silencing varisin resulted in 
a reduction of A. marginale infection in male ticks and 
morphologically abnormal bacteria colonies, which was 
contrary to the authors’ hypothesis [60].

A second defensin isoform, defensin-2, was also 
described in the hard tick D. variabilis which was less 
than 50% similar to varisin. Compared to the exclusive 

tissue specificity of varisin, defensin-2 exhibited a uni-
versal distribution, including the ovary, midgut, and fat 
body. When challenged with Rickettsia montanensis, the 
aetiological agent of Rocky Mountain spotted fever, an 
obvious delay effect on defensin gene transcription was 
noted in the fat bodies [62]. Moreover, defensin-2 was 
demonstrated to limit R. montanensis infection and asso-
ciate with the organism leading to cytoplasmic leakage 
[63].

Haemaphysalis longicornis defensin
It was discovered that a defensin peptide termed longicin 
was produced principally in the midgut epithelium from 
the parasite-bearing tick Haemaphysalis longicornis. 
Along with bactericidal and fungicidal behaviors, lon-
gicin remarkably inhibited the proliferation of equine 
Babesia equi at the stage of merozoite, an intra-eryth-
rocytic stage of parasites [37, 64]. Simultaneously, the 
babesiacidal property was validated in mice infected with 
murine B. microti by reducing parasitemia. RNAi data 
also revealed the involvement of endogenous longicin 
in Babesia killing and indicated the potential of longicin 
as a novel agent against zoonotic babesiosis [37]. The 
researchers also investigated the antimicrobial activity 
of reduced synthetic analogs from longicin, of which the 
peptide P4 in the C-terminus attracted their attention. 
With low cytolytic activity, the efficacy of motif P4 was 
similar to its full-length parent peptide. The structural 
analysis of the P4 peptide showed that the antimicrobial 
activity could be attributed to the β-sheet and the α-helix 
[37, 65]. Interestingly, the fragment of P4, antimicrobial 
peptide 1 (AMP1) still retained the anti-babesial func-
tion, which was more economical and efficient for chemi-
cal synthesis [66]. Further, longicin P4 treatment caused 
tachyzoites of Toxoplasma gondii to lose the capacity to 
exclude trypan blue dye and to infect the mouse embryo-
nal cell line (NIH/3T3). Longicin P4 bound to tachyzoites 
and resulted in pore formation, disorganization, and hol-
lowing in the membrane, thus killing the parasites [32]. 
The functional spectrum of longicin P4 was expanded to 
Langat virus (LGTV), a naturally attenuated strain as a 
convenient model of tick-borne flaviviruses [67, 68]. Co-
incubation of LGTV with longicin P4 before infection 
obviously decreased viral foci and virus yield, confirming 
that the action of longicin P4 against LGTV was through 
extracellular contact. In contrast to the inactivation of 
enveloped LGTV, the failure to fight a non-enveloped 
virus, human adenovirus 25, validated that the virucidal 
activity of longicin P4 was limited to membrane-coated 
targets [67].

Apart from the midgut, defensins were detected from 
a variety of organs in H. longicornis comprising the sali-
vary glands [69, 70], hemolymph [71, 72] as well as male 
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accessory glands [73]. Obtained from a cDNA library of 
H. longicornis, two novel defensins were characterized to 
afford protection for mice threatened by lethal bacterial 
infection [74].

Ixodes persulcatus defensin
In the taiga tick, Ixodes persulcatus, a defensin named as 
persulcatusin, was identified that was mainly expressed 
in the midgut. Persulcatusin was presented as a potent 
agent to resist the infection of multidrug-resistant Staph-
ylococcus aureus strains [75–77]. The significance of 
the tertiary structure in its combat against bacteria was 
emphasized as the three-dimensional peptide performed 
stronger activity than the primary linear one [78].

Ixodes ricinus defensin
Two defensin isoforms (def1 and def2) were isolated from 
a cDNA library of Ixodes ricinus. Def2 isoform possessed 
a more potent effect in inhibiting and killing bacteria than 
def1 [79–81]. Another study identified six novel defen-
sin genes, DefMT2–7, including two isoforms DefMT3 
and DefMT4, with different phylogeny and transcrip-
tional expression patterns [26]. Out of the five unique 
defensins, DefMT3, DefMT5, and DefMT6 had the 
inhibitory capability to Gram+ bacteria, Gram– bacteria, 
and fungi. It was noteworthy that the microorganisms 
attacked by defensins were rather distantly-related, con-
firming the broad-spectrum role of defensins [82]. Except 
for DefMT6, DefMT2–7 defensins prevented the growth 
of apicomplexan parasite Plasmodium falciparum in 
blood stages in vitro. A putative defensin peptide, Scor-
pions-Ticks Defensins Ancestor (STiDA), was acquired 
by reconstructing the ancestral amino acid sequence of 
chelicerate defensins around 444 million years ago, was 
also functional against P. falciparum, which inferred that 
antiplasmodial capacity of tick defensins had a conserved 
and ancient characteristic [83]. Furthermore, DefMT2, 
DefMT5, and DefMT6 significantly reduced rodent-asso-
ciated P. chabaudi parasitemia in a mouse model, sug-
gesting defensin treatment as a new strategy for malaria 
control [84]. Besides, the γ-core of DefMT3, named Tick-
Core3 (TC3), was a potent antifungal candidate. TC3 
efficiently decreased the growth of Fusarium gramine-
arum and the production of a severe food toxin from F. 
graminearum. The cysteine cyclization was unnecessary 
for such capacity, and the positively charged residues, 
especially lysine 6, exerted an important role in the anti-
fungi and anti-mycotoxin features of TC3 [33].

Ixodes scapularis defensin
Two multigene families of defensins, scapularisin and 
scasin, with 25 and 21 members respectively, were recog-
nized in the black-legged tick, Ixodes scapularis, through 

comparative genomics approaches [23, 39]. The two mul-
tigene families performed high phylogenetic diversity: 
scapularisins belonged to AITDs, whereas scasins were 
distantly relevant to AITDs. The γ-core motif of scapu-
larisin-20 was functionally assessed, which displayed 
antimicrobial potency to Gram+ and Gram−  bacteria 
[23]. Scapularisin-6 was effective against Gram+ Listeria 
grayi. Both scapularisin-6 and scapularisin-3 impeded 
the germination of phytopathogenic fungi Fusarium 
culmorum and Fusarium graminearum, implying their 
potential for agricultural application [85]. We list the 
antimicrobial spectrum of several well-investigated tick 
defensins or defensin motifs in Table 2, which exhibit an 
extensive range of activity.

Discussion
Collectively, tick defensins display a high degree of diver-
sity among soft and hard ticks families or different spe-
cies within the same genus. This differentiation could be 
correlated with the distinction of blood-feeding strate-
gies, in which soft ticks tend to feed rapidly (within min-
utes to hours), whereas the blood meal of hard ticks lasts 
for several days [7, 35]. The varieties of microorganisms 
encountered by ticks in their evolutionary process and 
geographical isolation may also contribute to the diver-
sity of defensins as a selection pressure [35, 83]. Although 
the investigations of antimicrobial activity of tick 
defensins are limited, a list of tick-borne pathogens has 
been targeted, including Anaplasma, Borrelia, Rickett-
sia, and protozoa Babesia, suggesting the future applica-
tion of defensins in the treatment of tick-borne diseases. 
Notably, tick defensins also hold immense potential to 
deal with the growing number of infectious agents resist-
ant to conventional antibiotics. These peptides have a 
wide spectrum of antimicrobial activity, a decreased inci-
dence to induce resistance, and the membrane-targeting 
mode of action, which made peptides not affected by 
antibiotic-resistance mechanisms [81]. Whether there 
are other modes of action for tick defensins remains to 
be further explored. Nonetheless, one of the principal 
challenges associated with the pharmaceutical applica-
tion of defensins is the high cost of production. Accord-
ingly, defining the minimum peptides from the parent 
molecules with retained capacity is an attractive research 
direction. Several paradigms have been provided, such as 
the carboxy-terminal fragments from O. savignyi and H. 
longicornis defensins and the γ-core motifs from several 
Ixodes defensins. Further investigations on the clinical 
applications of these peptides are warranted.

Meanwhile, functional portraits of tick defensins pro-
vide some clues about our understanding of tick-patho-
gen interactions, which influence vector competence, the 
ability of an arthropod to become a disease vector [86]. 
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Several studies have indicated that defensins play a role 
in influencing tick vector competence. For example, it 
was reported that hemolymph of D. variabilis incubated 
with B. burgdorferi presented strong borreliacidal activ-
ity; however, hemolymph from B. burgdorferi-challenged 
I. scapularis did not cause lysis of the bacteria, showing 
no proof of defensin induction [87]. These results corre-
sponded to the difference in vector competence between 
D. variabilis and I. scapularis, in which the former is 
unable to transmit the bacterium whereas the latter is 
the natural vector of this pathogen. Moreover, a defen-
sin from tick D. marginatus had evident activity against 
B. afzelii, supporting the hypothesis that non-vector ticks 
could remove Borrelia from the body [88]. Besides Lyme 
disease, the African swine fever virus (ASFV), transmit-
ted by Ornithodoros soft ticks, is also an urgent concern. 
A defensin-like peptide toxin OPTX-1 derived from O. 
papillipes was a competitive inhibitor of ASFV pS273R 
protease and thus inhibited the replication of ASFV. 
However, the hard tick-derived defensins displayed much 
more special inhibitory effects on pS273R protease. The 
distinct inhibitory efficiencies of tick defensins added the 
evidence that defensin determines vector competence 
[89].

Apart from being an essential effector molecule in 
tick immune response, two tick salivary defensins, 
IP defensin 1 (IPDef1) and IR defensin 2 (IRDef2) 
were identified as a novel class of pruritogens in a 
histamine-independent manner. IPDef1 initiated itch 
through activating MrgprC11/X1 to sensitize down-
stream ion channel TRPV1 on dorsal root ganglion 
neurons. Intriguingly, IPDef1 was also reported to 
trigger MrgprB2/X2 expressed on mast cells, leading 
to inflammatory cytokine release and provoking acute 
inflammation in mice [90]. These new findings extend 
the function of tick defensins to itch induction, which 
provides the basis for the precaution and treatment of 
pruritus caused by the stings or bites of arthropods. As 
mentioned above, tick defensins contribute to resist-
ing bacterial, fungal, viral, and protozoal infections and 
influencing tick vector competence in part. In addition, 
antioxidant, anti-inflammatory, and anti-endotoxin 
activities were discovered in O. savignyi defensins [50, 
52]. Together with the role in inducing itch, thus tick 
defensins can be defined as multifunctional peptides 
with promising potential in medicine and disease con-
trol. More information about the structure–activity 
relationship is awaited to be explored, which will give 
us a better understanding of tick defensins.

Table 2 Antimicrobial range of broad-spectrum defensins or defensin motifs

Defensin or defensin 
motif

Microorganism References

Gram+ bacteria Gram− bacteria Fungi Viruses Protozoa

O. savignyi
Os, Os-C and Os(11–
22)NH2

Bacillus subtilis; Staphy-
lococcus aureus

Escherichia coli; Pseu-
domonas aeruginosa

Candida albicans – – [34, 50, 53]

D. silvarum
Ds-defensin

B. pumilus; S. aureus; 
Micrococcus luteus; 
Mycobacterium bovis

Salmonella typhimu-
rium; P. aeruginosa; 
E. coli

C. albicans – – [38]

H. longicornis
longicin P4

S. aureus E. coli; P. aeruginosa; S. 
typhimurium

Pichia pastoris Langat virus Babesia spp.
Toxoplasma gondii

[32, 37, 67]

H. longicornis
longicornsin

S. aureus E. coli; P. aeruginosa; 
Helicobacter pylori

C. albicans – – [70]

H. longicornis
male-specific defensin

S. aureus; B. licheni-
formis

E. coli; P. aeruginosa; 
Serratia rubidaea; Psy-
chrobacter faecalis

C. albicans – – [73]

H. longicornis
hemolymph defensin

M. luteus; B. cereus; S. 
aureus

– – Langat virus – [71, 72]

H. longicornis
DFS1

S. aureus; M. luteus; M. 
bovis

E. coli; Borrelia burg-
dorferi

C. albicans – – [74]

I. ricinus
DefMT3 and DefMT5

Listeria monocytogenes; 
L. fleischmannii; L. grayi; 
L. seeligeri; S. aureus

P. aeruginosa Fusarium culmorum; F. 
graminearum

– Plasmodium falcipa-
rum

[82, 83]

I. ricinus
DefMT6

L. monocytogenes; L. 
fleischmannii; L. grayi; 
L. seeligeri; S. aureus; S. 
epidermidis

P. aeruginosa; E. coli F. culmorum; F. 
graminearum

– – [82, 83]

I. holocyclus
holosin 2 and holosin3

S. aureus; S. epidermidis; 
L.grayi

E. coli; P. aeruginosa F. graminearum; C. 
albicans

– – [41]
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Conclusions
As defensins have been found in more tick species, 
increasing evidence shows that defensins compose 
an integral class of AMPs in tick innate immunity. 
Explorations into how defensins react with ingested 
microbes help us understand the contact between ticks 
and pathogens, an essential part of tick-host–patho-
gen interaction. Great advancements have been made 
in the functional characterization of tick defensins. 
A large proportion of studies reported their antibac-
terial, antifungal, and antiprotozoal effects, and few 
findings described their activities against viruses. In 
contrast, the resolved three-dimensional structure of 
tick defensin is absent, which is a limitation for uncov-
ering structural factors influencing biological activity. 
Determining the minimum functional motif derived 
from tick defensins will be important for developing 
tick defensins as therapeutic agents to treat infections.
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