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Abstract 

Background Leprosy is an infectious disease caused by Mycobacterium leprae and remains a source of preventable 
disability if left undetected. Case detection delay is an important epidemiological indicator for progress in interrupting 
transmission and preventing disability in a community. However, no standard method exists to effectively analyse and 
interpret this type of data. In this study, we aim to evaluate the characteristics of leprosy case detection delay data 
and select an appropriate model for the variability of detection delays based on the best fitting distribution type.

Methods Two sets of leprosy case detection delay data were evaluated: a cohort of 181 patients from the post expo-
sure prophylaxis for leprosy (PEP4LEP) study in high endemic districts of Ethiopia, Mozambique, and Tanzania; and 
self-reported delays from 87 individuals in 8 low endemic countries collected as part of a systematic literature review. 
Bayesian models were fit to each dataset to assess which probability distribution (log-normal, gamma or Weibull) 
best describes variation in observed case detection delays using leave-one-out cross-validation, and to estimate the 
effects of individual factors.

Results For both datasets, detection delays were best described with a log-normal distribution combined with 
covariates age, sex and leprosy subtype [expected log predictive density (ELPD) for the joint model: −1123.9]. Patients 
with multibacillary (MB) leprosy experienced longer delays compared to paucibacillary (PB) leprosy, with a relative 
difference of 1.57 [95% Bayesian credible interval (BCI): 1.14–2.15]. Those in the PEP4LEP cohort had 1.51 (95% BCI: 
1.08–2.13) times longer case detection delay compared to the self-reported patient delays in the systematic review.

Conclusions The log-normal model presented here could be used to compare leprosy case detection delay datasets, 
including PEP4LEP where the primary outcome measure is reduction in case detection delay. We recommend the 
application of this modelling approach to test different probability distributions and covariate effects in studies with 
similar outcomes in the field of leprosy and other skin-NTDs.

Keywords Leprosy, Case detection delay, Neglected tropical diseases, Epidemiological methods, Bayesian approach, 
Statistical model

Background
Leprosy is an infectious disease caused by Mycobacterium 
leprae that mainly affects the skin and peripheral nerves 
[1]. The disease remains a source of preventable disabil-
ity in many endemic countries and is formally recognised 
by the World Health Organization (WHO) as a neglected 
tropical disease (NTD) [2]. At the individual level, delay 
in diagnosis and treatment of leprosy often results in 
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negative outcomes, such as physical impairment and dis-
ability [3]. Leprosy has a very long incubation period due 
to the slow growth of M. leprae, which can range from 1 
to more than 20 years [4]. Case detection delay in leprosy 
is defined as the total time from first signs of leprosy until 
diagnosis. Together, case detection delay is comprised of 
two components: the patient delay (the period between 
noticing the first sign or symptom to the first health care 
provider consultation) and the health system delay (the 
period between first health care provider consultation 
and the final diagnosis of leprosy) [5]. Assessing an indi-
vidual’s case detection delay is becoming a more widely 
used indicator in leprosy research as shortening this 
interval is imperative to interrupting transmission and 
preventing disability [1]. In fact, case detection delay will 
be used as the main outcome measure of effectiveness 
in the post exposure prophylaxis for leprosy (PEP4LEP) 
study, in which two integrated skin screening interven-
tions will be compared in Ethiopia, Mozambique and 
Tanzania [6]. Unlike tuberculosis, where case detection 
delay is typically measured in days, delay in leprosy diag-
nosis is usually measured in months considering the long 
incubation period of M. leprae, the gradual onset of first 
signs and symptoms, as well as ongoing stigma in many 
populations that can present barriers to seeking health-
care [5, 7–9].

There are a number of factors that may contribute to 
delayed case detection in leprosy. These include socio-
economic and community factors, health system capacity 
and individual factors such as age, sex, clinical subtype 
and disability [10]. The diagnosis of leprosy is based on 
clinical signs according to WHO classification crite-
ria, with paucibacillary (PB) defined as five or less skin 
patches with loss of sensation and multibacillary (MB) 
defined as six or more skin patches with loss of sensa-
tion and/or an affected nerve [11]. It has been previously 
shown that individuals presenting with MB leprosy have 
longer detection delays on average and are more likely to 
present with visible disability, such as nerve impairment 
and sensory loss, compared to those with the less severe 
PB form of the disease [12, 13]. A number of studies have 
reported patient age as a factor associated with delayed 
case detection, particularly those aged 50  years and 
above [12, 14, 15]. A person’s sex has also been suggested 
to be associated with longer delays. While some studies 
have reported significantly higher rates of grade 2 dis-
ability (G2D) in males compared to females, these figures 
are expected to vary between contexts and are linked to 
cultural and societal factors, as well as healthcare seeking 
behaviour [16–18].

Despite recent efforts to develop tools to more accu-
rately estimate case detection delays, no standard method 
exists to effectively analyse delay data and to compare 

these between settings and interventions [19]. Statisti-
cal modelling has been a useful tool in addressing analo-
gous problems in infectious disease research, including 
analysing determinants of patient diagnosis delay in 
tuberculosis, quantifying effects on onset-to-diagnosis 
waiting times in visceral leishmaniasis and identifying 
associations between diagnosis delay and neurologi-
cal outcomes in cryptococcosis [20–22]. In particular, 
Bayesian statistical modelling is becoming more widely 
used as an alternative to frequentist statistics, includ-
ing delayed reporting of count data [23]. Another recent 
example was a study on dengue fever incidence in Brazil 
that used a Bayesian hierarchical modelling approach to 
correct reporting delays and quantify uncertainty [24]. In 
the field of leprosy, a Bayesian framework has also been 
applied to predict future sub-clinical and clinical infec-
tions in the context of Thailand using a back-calculation 
model with assumptions for the distributions of incuba-
tion period and detection delay [25]. Among the advan-
tages of this approach is the ability to incorporate prior 
knowledge about parameters into the model and the 
explicit use of probability to model uncertainty [26, 27].

In this study, we aim to evaluate the characteristics of 
two existing case detection delay datasets collected from 
across different contexts. Bayesian models were fit to 
each dataset to assess which probability distribution best 
describes variation in observed case detection delays and 
to estimate the effects of individual factors. This approach 
could be used as a standard methodology to compare the 
effectiveness of the two interventions in the PEP4LEP 
study and applied to future research projects with similar 
outcomes in the field of leprosy and other skin-NTDs.

Methods
Datasets
Two sets of leprosy case detection delay data that were 
recently collected and available to the researchers were 
used to evaluate characteristics. The first was collected 
from the baseline component of the PEP4LEP study, a 
cluster-randomised implementation trial comparing two 
interventions of integrated skin screening combined with 
single-dose rifampicin post-exposure prophylaxis (SDR-
PEP) for contacts of leprosy patients in Ethiopia, Mozam-
bique, and Tanzania [6]. This dataset (‘PEP4LEP dataset’) 
was comprised of 181 estimates of case detection delay 
in patients diagnosed between 2020 and 2021 living in 
highly endemic areas obtained from interviews with a 
structured questionnaire within six months of diagnosis 
[19, 28–30]. The second dataset contained self-reported 
delays in the health facility at the time of diagnosis from 
87 individuals presented in a recent systematic review 
investigating case characteristics during the declining 
stages of leprosy incidence, with diagnosis dates ranging 
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from 1989 to 2018 [31]. The case reports in this dataset 
(‘Global dataset’) were collected from 8 low endemic 
countries: Australia, Germany, Italy, Japan, Portugal, 
Spain, United Kingdom and United States.

All estimates were presented in months and both 
included data marked as 0 for no delay, as well as deci-
mals for delays reported in weeks. Left censoring was 
applied to values of less than or equal to one month, since 
a detection delay of exactly zero cannot exist in reality 
and these values must reflect a delay that is shorter than 
the minimal non-zero delay. This is because there must 
be some inherent delay that may be less than one month 
but more than no time at all until diagnosis, namely the 
time elapsed before visiting a health facility. Addition-
ally, the reason for censoring non-null values less than or 
equal to one month rather than one, two or three weeks 
is that the majority of leprosy case detection delay esti-
mates are reported in months, including those from 
the structured questionnaire, so we are censoring any 
delays below the lowest unit value. No right censoring 
was applied to values above a certain range that may be 
considered statistical outliers, since very long delays are 
expected in the case of leprosy. Such ‘lifelong delays’ may 
be true estimates reported by individuals that have expe-
rienced clinical manifestations of leprosy for multiple 
years or decades prior to diagnosis.

Statistical analyses
First, the characteristics of both datasets were exam-
ined, including their distribution, variance and meas-
ures of central tendency, primarily using histograms of 
case detection delay data. Additionally, the cumulative 
distribution function (CDF) of case detection delay and 
log-transformed case detection delay were examined to 
further evaluate the distribution of both data sets. Based 
on these observations, three positively bounded, continu-
ous probability distributions for the response variable 
were fitted as statistical models to each case detection 
delay dataset: a log-normal distribution (i.e., a normal 
distribution on the logarithmic scale), a gamma distribu-
tion and a Weibull distribution [32]. We included age (in 
decades), sex and leprosy subtype (PB vs MB) as predic-
tors in all three models since these variables are widely 
available for leprosy cases and have been reported to be 
associated with the length of case detection delay [10]. 
Leprosy subtype was assigned in both datasets accord-
ing to the WHO classification system [11]. In each of the 
models, age, sex and leprosy subtype were used as linear 
predictors of the log-mean, meaning that the exponent 
of any model coefficient reflected the relative change in 
mean detection delay (geometric mean for log-normal 
model and arithmetic mean for the two other distribu-
tions) for each unit change in the value of a predictor, 

keeping the other predictors fixed. The assumption of a 
linear relationship between age and log-detection delay 
was assessed using a scatterplot with line of best fit. Left 
censoring of case detection delays less than or equal to 
one month was explicitly modelled. Left-censored obser-
vations were modelled by defining their likelihood as 
the cumulative probability of the detection delay being 
between zero and 1  month, given the expected detec-
tion delay for that observation based on the predictors 
and the standard deviation of unexplained variation in 
detection delays in the entire dataset (which was mostly 
informed by the non-censored observations). Model 
parameters were estimated in a fully Bayesian framework 
in R version 4.1.3 (https:// www.r- proje ct. org/) [33], using 
the package brms version 2.17.0 [34]. The brms pack-
age utilises the Hamiltonian Monte Carlo sampling for 
exploring the posterior via the No-U-Turn Sampler [35].

To check that prior distributions were reasonable, prior 
predictive checks were performed to check whether 
the specification of the priors for the individual model 
parameters also make sense in terms of the resulting 
expected prior distribution of data (i.e., our prior expec-
tation of what a typical dataset might look like). Ideally, 
the resulting distribution would have most of its prob-
ability mass span a plausible range of datasets. [36]. The 
following combinations were tested as priors for the 
model intercept and regression coefficients to check 
if the generated predicted values spanned a plausible 
range that fit with our prior expectations: normal distri-
bution [mean = 0, standard deviation (SD) = 1], normal 
distribution (mean = 0, SD = 5) and normal distribu-
tion (mean = 0, SD = 10). In addition, we performed a 
series of posterior predictive checks (PPCs) to assess 
whether the models were capable of producing valid 
predictions [36]. In the PPC procedure, for each poste-
rior draw of model parameters, we generated a synthetic 
dataset of the same dimensions as the original, drawing 
from the fitted probability distribution, conditional on 
observed distribution of predictors in the original data. 
The model fits were then be assessed by comparing 
(graphical) summaries of the repeated synthetic datasets 
with the same type of summary of the original data. For 
these comparisons, we plotted the empirical cumula-
tive distributions, kernel density estimates, histograms 
of means and medians, and scatterplots of means versus 
standard deviations of observed and predicted detection 
delays. Pareto smoothed importance sampling (PSIS) 
was used to assess the reliability of model estimates by 
highlighting data points that were most influential on 
the posterior distribution, with an acceptable Pareto 
shape k threshold of 0.5 used for the diagnostic output 
of the model [37]. Finally, model diagnostics were per-
formed to check model validity, including trace plots for 

https://www.r-project.org/
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parameters and autocorrelation plots to assess sampling 
dependency of Markov chains. All models had the fol-
lowing run specifications: number of Markov chains = 4, 
iterations = 10,000, burn-in (warmup) time = 1000 and all 
parameters were initialised to zero.

As a quantitative assessment of the external validity 
of each model, we then assessed the pointwise out-of-
sample prediction accuracy based on approximate leave-
one-out cross-validation (LOO-CV). This method uses 
the expected log predictive density (ELPD), related to the 
posterior predictive density, to calculate the LOO infor-
mation criterion (LOOIC) for new data, with correspond-
ing standard errors (SE) as a measure of uncertainty for 
the criterion. The LOOIC is equal to − 2 × ELPD and a 
lower value of the LOOIC means that a model explains 
the variation in the data better. Based on the SEs of the 
difference between two models’ LOOIC, the perfor-
mance of those models can be compared, while penalis-
ing for model complexity (overfitting inflates the SE of 
the ELPD) [38]. In case of conflicting results with regard 
to selection of the distribution for the two datasets, the fit 
to the PEP4LEP dataset took precedence over the Global 
dataset, given that these delays were obtained through 
interviews with a structured questionnaire and were 
therefore deemed more reliable. Once the final model 
was selected based on validity checks for both datasets 
separately, the relative difference between the two data-
sets (PEP4LEP and Global) was estimated by merging the 
two datasets and adding ‘dataset’ as a binary indicator 
covariate in the model (in addition to age, sex and leprosy 
subtype). To account for the different residual variation 
observed in each dataset, we specified in our model that 
the residual standard deviation (sigma) parameter of the 
response distribution could vary by dataset. We also gen-
erated conditional effect plots, which allow us to plot the 
predicted geometric means of the response conditional 
on all other predictors. The conditional values used to 
fix the other predictors were the arithmetic mean of age 

(decades) for the joint dataset and the reference category 
for the sex variable (male).

Results
Characteristics of leprosy case detection delay data
An overview of case detection delay data and patient age 
for both datasets, including measures of central tendency 
and variability can be seen in Table 1. While the arithme-
tic mean detection delay was higher in the Global data-
set, the geometric mean and the median delay were lower 
compared to the PEP4LEP dataset. The coefficient of 
variation (CV) was also higher in the Global dataset. This 
difference was primarily driven by a few cases with very 
long delays in the Global dataset, including one patient 
with a reported delay of 396 months (33 years). Leprosy 
cases in the Global dataset were slightly older, with an 
average age of 47.6  years compared to 39.7  years in the 
PEP4LEP dataset. In Table 2, a summary of case charac-
teristics and detection delays across different age groups, 
sex and leprosy subtype is shown, including the arithme-
tic mean, geometric mean and median for each subgroup. 
In both datasets, around two-thirds of leprosy cases were 
male. A majority of all cases were MB, with a higher pro-
portion observed in the PEP4LEP dataset compared to 
the Global dataset (84.5% and 75.3% respectively).

Histograms showing the distributions of case detection 
delay for both datasets, as well as the combined datasets, 
are presented above (Fig. 1). In both datasets, detection 
delays were non-normally distributed with a right-skew 
on the natural scale. For the Global dataset, there was a 
higher proportion of delays under 24 months and a few 
very long delays. The PEP4LEP dataset resembled a nor-
mal distribution when plotted on the log scale, suggesting 
a possible log-normal distribution. A similar distribution 
can be seen for the Global dataset when plotted on the 
log scale, although the pattern was less clear. The CDF 
of case detection delay and log-transformed case detec-
tion delay were also examined (Additional file 1: Fig. S1). 

Table 1 Overview of case detection delay and age for individuals in the PEP4LEP and Global datasets

a Geometric mean of non-zero values (number of zero values in datasets: PEP4LEP = 1, Global = 2). PEP4LEP Post exposure prophylaxis for leprosy

Case detection delay (months) Age (years)

Data source N Arithmetic 
mean

Geometric 
 meana

Standard 
deviation

Coefficient of 
variation

95% 
Confidence 
intervals 
(arithmetic 
mean)

Median Range

Lower Upper Min Max Arithmetic 
mean

Median

PEP4LEP dataset 181 25.9 18.2 28.7 1.11 21.7 30.0 18.0 0 292 39.7 36.0

Global dataset 87 30.6 13.9 54.8 1.79 19.0 42.1 14.0 0 396 47.6 42.0
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The CDF of case detection delay on the natural scale was 
indicative of an exponential distribution for both data-
sets. The CDF of the log-transformed case detection 
delay showed a sigmoid curve, particularly for the PEP-
4LEP dataset, suggesting a log-normal distribution.

Statistical modelling
Before including age in the model, we first checked that 
the linear association between age and log-outcome was 
a reasonable assumption (Additional file  1: Fig. S2). For 
both datasets, as well as the combined datasets, LOO-CV 
showed that the log-normal model had the highest ELPD 
and lowest LOOIC (Table  3). These measures indicate 
that the log-normal model was expected to have better 
predictive performance than the gamma and Weibull 
models, although there was a large degree of uncertainty 
(i.e., standard error of the difference). Based on the LOO-
CV and PPCs, the log-normal distribution was selected 
to be used in the joint model for the integrated detection 
delay datasets.

After selecting the log-normal model as the best, we 
jointly analysed the two datasets in one model with a 
predictor indicating the dataset. Based on prior predic-
tive checks, we used a normal distribution (mean = 0, 
SD = 1) for the intercept and regression coefficients as 
these priors generated prior predictive values spanning 
a plausible range that fit with our prior expectations of 
what a dataset could reasonably look like, whereas this 
was not the case with more vague priors (Additional 

file  1: Fig. S3). PPCs further showed that the joint 
log-normal model was able to adequately reproduce 
the data in terms of posterior predictive distribution 
(Additional file  1: Fig. S4). A summary of joint model 
run specifications, including the model equation and 
priors for the intercept and covariate effects is pro-
vided (Additional file 2: Table S1). PSIS revealed that all 
data points were below the acceptable Pareto shape k 
threshold (0.5) for the diagnostic output of the model 
(Additional file  1: Fig. S5). Trace plots indicated con-
vergence towards the posterior distribution (Additional 
file 1: Fig. S6), while autocorrelation plots showed very 
low sample dependency for each covariate after only a 
few lags (Additional file 1: Fig. S7).

After correction for age, sex, and leprosy subtype, 
there was a relative difference in the geometric mean 
case detection delay of 1.51 (95% BCIs: 1.08–2.13) for 
patients in the PEP4LEP dataset vs the Global data-
set (Fig.  2). A longer geometric mean delay was also 
observed in patients with MB leprosy compared to PB, 
with a relative difference of 1.57 (95% BCIs: 1.14–2.15). 
There was no difference between males and females or 
by age in our model. The joint effects of dataset and 
leprosy subtype on the geometric mean response values 
of the posterior predictive distribution, correcting for 
age and sex, can be seen in Fig. 3. Here we see that the 
difference in effect (around 1.5 times higher) and level 
of uncertainty of MB vs PB on case detection delay is 
more or less the same in the two datasets.

Table 2 Overview of case characteristics and detection delays across different age groups, sex and leprosy subtype for individuals in 
the PEP4LEP and Global datasets

PB Paucibacillary, MB Multibacillary, PEP4LEP post exposure prophylaxis for leprosy
a Geometric mean of non-zero values (number of zero values in datasets: PEP4LEP = 1, Global = 2). MB Multibacillary, PB Paucibacillary, PEP4LEP Post exposure 
prophylaxis for leprosy

Characteristic Data source

PEP4LEP Global

N (%) Case detection delay (months) N (%) Case detection delay (months)

Arithmetic 
mean

Geometric 
 meana

Median Arithmetic 
mean

Geometric 
 meana

Median

Age group

 0‒20 20 (11.0) 22.3 16.6 17.5 3 (3.4) 24.7 17.9 20.0

 21‒40 91 (50.3) 22.8 17.7 18.0 37 (42.5) 21.6 11.8 12.0

 41‒60 48 (26.5) 30.7 17.1 18.0 19 (21.8) 35.2 21.4 24.0

  > 60 22 (12.2) 31.4 24.9 27.5 28 (32.2) 39.9 12.4 12.0

Sex

 Male 116 (64.1) 24.7 17.8 18.0 60 (69.8) 29.7 13.1 12.5

 Female 65 (35.9) 28.0 18.9 18.0 26 (30.2) 32.8 16.0 24.0

Leprosy subtype

 PB 28 (15.5) 18.9 13.7 12.5 21 (24.7) 16.0 8.6 17.0

 MB 153 (84.5) 27.1 19.1 20.0 64 (75.3) 35.3 16.1 13.5
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Discussion
The aim of this study was to evaluate the characteristics 
of leprosy case detection delay data and select an appro-
priate model for the variability of detection delays based 
on the best fitting distribution type. We found that a log-
normal distribution best described case detection delay 
data in the PEP4LEP and Global datasets compared to 
gamma and Weibull. By fitting a Bayesian model with a 
log-normal distribution for the response variable, we 
were able to estimate the relative difference in geomet-
ric mean detection delay between the two datasets while 
correcting for the effects of age, sex and leprosy subtype. 
This same methodology could be used to compare two or 
more groups of leprosy case detection delay, with impli-
cations for studies such as PEP4LEP where case detection 
delay is used as the primary outcome measure for com-
paring effectiveness.

In previous studies, multivariable modelling has been 
applied to analogous indicators in the field of NTDs 
[20–22]. A key difference in this study was leprosy case 
detection delays were reported after diagnosis with 
no distinction between symptomatic and asympto-
matic infection, meaning these data were best handled 
as a continuous variable and not subject to a time-to-
event analysis. In the case of tuberculosis, long delays 
in diagnosis are associated with greater transmission 
to contacts [39]. Despite the much longer incubation 
time, the same reasoning can be applied to leprosy as 
prolonged exposure with somebody living with the dis-
ease in the household or community has been shown 
to increase the risk of infection [40, 41]. Here we 
incorporated three individual factors: age, sex and lep-
rosy subtype as predictors in our model since they are 
widely available in case reports and patient databases. 
Moreover, these factors have been previously shown to 

Fig. 1 Distributions of case detection delay (months) for the PEP4LEP, Global and combined datasets. The data are presented on the natural 
scale (left) and the logarithmic scale (right). The blacked dashed line indicates the point of left-censoring, with these values plotted at half of the 
censored value (0.5)
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be associated with case detection delays. We consid-
ered adding additional variables, in particular disability 
grade. However, WHO disability classification for lep-
rosy can vary between different settings, including the 
distinction between grade 1 and grade 2, and this infor-
mation is not always reported, which was also the case 
in our study.

When assessing which probability distribution best 
described variation in observed case detection delays, 
we deemed it imperative that it demonstrated a strong 
predictive performance for the observed values in the 
PEP4LEP dataset, as these delays were estimated using 
a structured questionnaire and culturally validated in 
the three PEP4LEP study countries using the conceptual 

Table 3 Summary of model comparison using leave-one-out (LOO) cross-validation

LOOIC is LOO information criterion; ELPD is expected log predictive density. LOOIC = −2 × ELPD and ELPD difference is the ELPD value relative to that of the best 
performing model, i.e., the log-normal model, which has the lowest LOOIC (or highest ELPD). The standard error is a measure of uncertainty for the ELPD difference 
relative to the log-normal model

ELPD Expected log predictive density, LOOIC LOO information criterion, PEP4LEP Post exposure prophylaxis for leprosy

PEP4LEP dataset

Model LOOIC ELPD ELPD difference Standard 
error (ELPD 
difference)

Gamma 1532.4 −766.2 −6.5 8.1

Weibull 1543.9 −771.9 −12.2 9.8

Log-normal 1519.5 −759.8 0 0

Global dataset

Model LOOIC ELPD ELPD difference Standard 
error (ELPD 
difference)

Gamma 738.1 −369.0 −6.3 5.5

Weibull 732.9 −366.4 −3.7 4.1

Log-normal 725.5 −362.7 0 0

Combined datasets

Model LOOIC ELPD ELPD difference Standard 
error (ELPD 
difference)

Gamma 2255.4 −1127.7 −3.8 8.9

Weibull 2261.7 −1130.8 −7.0 9.5

Log-normal 2247.7 −1123.9 0 0

Fig. 2 Bayesian estimates of relative difference for covariates in the full model (left) and forest plot of relative differences in geometric mean delays 
with 95% Bayesian credible intervals for model covariates (right)
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framework of Herdman et  al. [19, 42]. Nevertheless, 
we found that models using a log-normal distribution 
for case detection delay performed best for both data-
sets. When modelling case detection delays with a log-
normal distribution, it is important to consider that the 
level of variation may well vary between datasets. There-
fore, the standard deviation of the log-normal distribu-
tion needs to be allowed to vary by data source or site, 
as was the case here. After validating our full model for 
the joint datasets through a series of PPCs, we estimated 
the effects of individual factors on geometric mean case 
detection delay. Before including age as a continuous var-
iable in our log-normal model, we first checked that there 
was a linear relationship between age and log-detection 
delay, albeit with a weak association. In our full model, 
we found no relative difference in case detection delay 
by 10-year increase in age. Although it has been previ-
ously reported that patient age is a factor associated with 
delayed case detection, particularly those aged 50  years 
and above [12, 14, 15], other studies have found that 
patient delay was independent of age, including in Brazil, 
Colombia and China [43–45]. There was also no relative 
difference observed between males and females in our 
model. While some studies have reported an association 
between sex and leprosy case detection delay, these find-
ings likely context specific, particularly with respect to 

cultural and societal factors, as well as healthcare seek-
ing behaviour and access to health services. On the other 
hand, we found that the geometric mean case detection 
delay was around 1.5 times higher for patients in the 
PEP4LEP dataset compared to the Global dataset and for 
MB patients compared to PB. Moreover, joint effect plots 
of the posterior predictive distribution showed that the 
effect and level of uncertainty of MB vs. PB on case detec-
tion delay was more or less the same in the two datasets. 
This is in line with previous studies that reported MB 
patients having longer detection delays on average com-
pared to PB and gives more confidence to the validity of 
our datasets and model fit [12, 13].

A strength of the Bayesian modelling approach used 
in this study was the ability to test multiple distribu-
tions on more than one dataset. Moreover, this method 
has advantages over performing a simple non-parametric 
test comparing sample means or medians, as it corrects 
for covariates thought to have an effect on the outcome. 
There were also some important limitations, namely the 
accuracy and precision of the delay estimates. While the 
PEP4LEP dataset used a more systematic method of esti-
mating case detection delay through a structured ques-
tionnaire, there is always a risk of patient recall bias, and 
this was very likely the case with some patient reported 
delays collected in the Global dataset. There is also the 

Fig. 3 Two-way effect plot for the covariates of the full model: dataset (on the x-axis) and leprosy subtype (PB in blue and MB in red), corrected for 
age and sex. The solid points represent the geometric mean response values of the posterior predictive distribution with 95% Bayesian credible 
intervals. MB Multibacillary, PB Paucibacillary; PEP4LEP Post exposure prophylaxis for leprosy
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issue of underreporting, regardless of the data source 
considered. Recent studies have used statistical model-
ling to correct underreporting in epidemiological data, 
including a paper by de Oliveira et al. that used a Bayes-
ian approach to estimate underreporting of leprosy in 
Brazil [46]. Although correction of underreporting is 
beyond the scope of this study, it is important to high-
light this as a recurrent problem in the study of leprosy 
rates, especially as it pertains to case detection delay. 
There are also other factors shown to influence case 
detection delay, including having a lower disease-symp-
tom perception and lack of knowledge, living in a rural 
area, performing agricultural labour, unemployment and 
stigma [10]. Although such factors may undoubtedly play 
a role in an individual’s case detection delay, these data 
are less commonly available and we decided to omit them 
given the aim was for us to establish a standard method-
ology that can be widely used by researchers in the field. 
Both datasets were selected for this analysis based on 
availability and the findings reported here, including the 
log-normal distribution providing the best fit for the ana-
lysed data, may not be valid for other databases of leprosy 
case detection delay. Moreover, only two other candidate 
distributions (gamma and Weibull) were considered in 
this study. Additionally, the two databases explored here 
come from different regions and, in the case of the Global 
dataset, have a long time span. Therefore, there may be 
important differences in other factors influencing case 
detection delay in leprosy that were not explored here, so 
the issue of heterogeneity needs to be considered. While 
we found that case detection delays estimated in months 
were best described by a log-normal distribution com-
bined with covariates age, sex and leprosy subtype, sup-
ported by analysis of two datasets, if case detection delays 
were reported as another time unit, e.g. in days, weeks or 
years, this could affect the probability distribution selec-
tion. Furthermore, although measuring delays in number 
of months is more practical given the long incubation 
time of the disease, it does raise concerns regarding pre-
cision, with longer delays subject to high variation that 
can strongly influence point-estimates. However, we 
expect that this type of variation is well captured by the 
use of a log-normal distribution, which accommodates 
this type of highly skewed variation since geometric 
means are less affected by these very long delays.

Conclusions
Case detection delay is an important epidemiological 
indicator in leprosy research and shortening delay in 
a population could be seen as a proxy for interrupting 
transmission and preventing disability in a community. 
The log-normal model presented here could be used to 
compare relative differences in the geometric means of 

leprosy case detection delay datasets, including PEP4LEP 
where the primary outcome measure is reduction in case 
detection delay. We recommend the application of this 
modelling approach as a standard methodology to test 
different probability distributions and covariate effects 
in future research projects with similar outcomes in the 
field of leprosy and other skin-NTDs.
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