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Abstract 

Since the COVID-19 pandemic began, a plethora of modeling studies related to COVID-19 have been released. While 
some models stand out due to their innovative approaches, others are flawed in their methodology. To assist novices, 
frontline healthcare workers, and public health policymakers in navigating the complex landscape of these models, 
we introduced a structured framework named MODELS. This framework is designed to detail the essential steps 
and considerations for creating a dependable epidemic model, offering direction to researchers engaged in epidemic 
modeling endeavors.
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Background
Since the outbreak of the coronavirus disease 2019 
(COVID-19) pandemic, numerous COVID-19 modelling 
studies have been published. Although some proposed 
models are noticeable and exhibit creative designs, others 
contain methodological errors. Considering advancing 
of knowledge regarding disease epidemic characteristics, 
transmission patterns, control strategies, and the impacts 
of public health and social measures (PHSMs), research-
ers have increasingly utilized mathematical language and 
models to quantitatively elucidate the dynamics of dis-
ease spread among hosts, as well as the interplay between 
etiology and the environment. This endeavor has culmi-
nated in the development of theoretical epidemiology, 

enabling a comprehensive exploration of the effects 
of diverse preventive and control measures. However, 
epidemiological models of various diseases are often 
constrained by inherent limitations arising from the chal-
lenges of model selection and construction.

Grappling with the diverse content of these models is 
challenging for beginners, primary health workers, and 
public health officials. In this study, we developed a novel 
framework for developing an infectious disease model 
called MODELS, comprising six steps: (1) Mechanism of 
occurrence, (2) Observed and collected data, (3) Devel-
oped model, (4) Examination for model, (5) Linking 
model indicators and reality, and (6) Substitute specified 
scenarios.

We also outline the process of model construction 
(Fig. 1), establish an infectious disease modelling frame-
work, and provide researchers with valuable insights into 
future modelling endeavors. Our proposed framework 
provides guidance for researchers interested in epidemic 
models.
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M: Mechanism of occurrence
The first step, the mechanism of occurrence in infec-
tious diseases, involves a complex interplay of factors 
that determine the development, transmission, and 
control of these diseases. Understanding the mecha-
nism of occurrence is fundamental for accurate mod-
elling and prediction of disease dynamics, as well as 
for developing effective intervention strategies. In this 
section, we delve into the key components that con-
stitute the mechanism of occurrence, including the 
natural history of disease, transmission process, risk 
factors, and possible interventions. During determining 
the process of mechanism of occurrence in infectious 
diseases, we often encounter various challenges. This 
is particularly true in the early stages of a novel infec-
tious disease outbreak, where there tends to be a lack 
of clear understanding of its natural history. Therefore, 
it is essential to integrate and continuously update data 
from clinical, epidemiological, and laboratory studies in 
order to ensure the reliability of these parameters.

M1: Disease natural history
The natural history of a disease encompasses its entire 
trajectory, starting from its onset and progressing 
through various stages to its outcome without any treat-
ment or intervention [1]. In the first step of modelling, 
it is necessary to consider whether to develop the study 
at the individual perspective or at the group perspec-
tive. The disease process is characterized by dynamic 
changes in an individual’s status, including susceptible 
individual, exposed individual, symptomatic or asympto-
matic infected individual, and recovered individual. From 
the group perspective, this means that the population 
is divided into groups based on their status at different 
times, these categories have similar transmission char-
acteristics and don’t need to consider differences at the 
individual level.

When considering the natural history, the key epide-
miological characteristics of the infectious disease are 
considered, including infectivity, pathogenicity, and vir-
ulence. It is essential to elucidate the natural history of 

Fig.1 MODELS framework
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the disease process by tracking these status updates. The 
status flowchart varies depending on the specific type of 
infectious disease.

M2: Transmission process
Developing a dynamic transmission model requires a 
comprehensive understanding of the disease, encom-
passing various aspects such as transmission patterns, 
incubation periods, infectious periods, and popula-
tion demographics. Selecting an appropriate modelling 
approach relies on understanding the primary modes of 
transmission, such as respiratory droplets, direct contact, 
and vector-borne transmission through organisms such 
as mosquitoes.

Transmission dynamic models are based on essen-
tial characteristics known as the "three links" (infectious 
source, transmission route, and susceptible population) 
and the "two factors" (natural and social factors). These 
models consider multiple transmission routes, including 
human-to-human, environmental (e.g., through food or 
water), and vector-to-human transmission. Additionally, 
the influence of natural factors, such as environmental 
conditions like temperature and humidity, on pathogen 
survival and transmission is considered.

Dynamic transmission models incorporate practi-
cal control measures to align with real-world trans-
mission and disease control efforts. These measures 
encompass both pharmacological interventions, such as 
antiviral drugs, antibiotics, and vaccines, and non-phar-
macological interventions, such as contact tracing, test-
ing and screening, school closures, hand hygiene, social 

distancing, and mask-wearing. Environmental disinfec-
tion, drinking water treatment, and vector control strate-
gies are also considered.

R3: Risk factors
Risk factors play a critical role in the transmission and 
impact of infectious diseases. By understanding and iden-
tifying these factors, we can gain insights into the vulner-
ability of populations, the severity of disease outcomes, 
and the potential for disease spread. In this section, we 
explore two broad categories of risk factors: nature and 
social factors (Fig. 2).

M3.1 Nature factors
Nature factors include a range of environmental, geo-
graphic, and ecological factors that influence the preva-
lence and distribution of infectious diseases. For example, 
meteorological factors, such as temperature, humidity, 
and rainfall patterns, directly affect the activity and trans-
mission of pathogens. Geographic factors, including ter-
rain, proximity to water bodies, and elevation, can affect 
the distribution of disease vectors or reservoirs. Eco-
logical factors consider the intricate interactions among 
pathogens, hosts, and the environment, highlighting the 
complex dynamics that contribute to disease emergence 
and persistence.

Geographical factors have a significant impact on dis-
ease prevalence. The distribution of diseases and their 
vectors is influenced by the terrain, proximity to water 
bodies, and elevation. For example, the geographical 
distribution of vector organisms varies considerably. 

Fig. 2 Risk factors on disease transmission
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Meteorological factors play crucial roles in the transmis-
sion dynamics of insect-borne infectious and zoonotic 
diseases. Temperature directly affects the activity and 
growth cycles of insect vectors. Furthermore, tempera-
ture also has a greater impact on respiratory infectious 
diseases; lower temperatures during winter, combined 
with weakened human resistance, tend to result in 
a higher incidence of respiratory infections such as 
influenza.

Ecological and meteorological factors significantly con-
tribute to the prevalence of infectious diseases. These 
factors encompass the intricate interactions between 
pathogens, hosts, and the environment. Disruptions in 
ecosystems, such as habitat fragmentation, deforesta-
tion, and changes in land use, alter the distribution and 
abundance of disease vectors and reservoirs, leading to 
increased contact between humans, wildlife, and vectors. 
This heightened interaction facilitates the spillover of 
zoonotic diseases into human populations. The ecologi-
cal balance within ecosystems plays a crucial role in the 
amplification or suppression of infectious diseases.

M3.2: Social factors
Social factors encompass various societal and behavioral 
aspects that influence the transmission of infectious dis-
eases. These factors include socioeconomic conditions, 
living standards, healthcare access and infrastructure, 
educational levels, cultural practices, and population 
density.

Socioeconomic conditions and living standards sig-
nificantly affect the disease spread. Access to clean and 
hygienic living environments free from toxins is essential 
for reducing the occurrence of certain diseases.

Healthcare access and the level of public health ser-
vices are critical factors affecting infectious disease 
outcomes [2]. Improved medical and health conditions 
coupled with robust public health measures enhance 
disease prediction, diagnosis, and treatment. Increased 
vaccine coverage and improved detection systems 
reduce the incidence of infectious diseases.

Moreover, the social system and speed of government 
response significantly affect epidemic control. The strict 
enforcement of importation measures, quarantine pro-
tocols, and effective treatment strategies have proven 
crucial in containing the spread of infectious diseases, 
as exemplified during the COVID-19 pandemic.

Recognizing the interplay between social factors and 
infectious diseases is vital for effective disease manage-
ment and prevention. By understanding the societal con-
text, interventions can be tailored to address specific risk 
factors and promote behavioral changes. To achieve com-
prehensive and sustainable disease control, collaboration 
between PHSMs and environmental factors is essential.

Overall, a comprehensive understanding of the social 
factors and other epidemiological considerations is cru-
cial for designing and implementing effective strategies 
to mitigate the impact of infectious diseases and pro-
tect public health.

M4: Possible interventions
According to the characteristics of various infectious 
diseases, integrated interventions are implemented to 
prevent the continued spread of infectious diseases by 
targeting the leading links of transmission. Three basic 
components of the epidemiological process of infec-
tious diseases are targeted (Fig. 3).

Fig. 3 The process by which interventions affect the transmission process of infectious diseases
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M4.1: Managing sources of infection
The key elements include: (1) timely reporting of infec-
tious diseases; (2) control measures for patients, carri-
ers, and close contacts; (3) control measures for animal 
sources of infection; (4) measures for environmental 
contamination of infected sites.

M4.2: Interrupting transmission routes
Specific measures are employed that are based on the 
transmission process of the infectious diseases: (1) 
intestinal infectious diseases: effective management 
of the disposal of feces and other contaminants and 
environmental disinfection; (2) respiratory infectious 
diseases: air disinfection, ventilation, and personal 
protection (e.g., wearing masks); (3) zoonotic diseases: 
insecticide and pest control; (4) infectious diseases with 
complex transmission routes: establishment of compre-
hensive protective measures to address various trans-
mission patterns.

M4.3: Safeguarding highly susceptible populations
Primary measures include vaccination, developing an 
immune barrier, providing preventive medications to 
people at risk, and taking personal protective measures.

O: Observed and collected data
Observation and data collection are essential for model-
ling infectious diseases. These activities help determine 
the epidemiological characteristics of infectious dis-
eases, such as the rate of virus transmission, incubation 
period, and mode of transmission, which are essential for 
the accurate modelling and prediction of disease spread. 
By analyzing the epidemic data, we can forecast the tra-
jectory and magnitude of future outbreaks, assess the 
effectiveness of control measures, and optimize disease 
control strategies. For some researchers with primary 
data, people who work at the center for disease control 
and prevention or in hospitals, it is often easier to pro-
ceed in this step, and they have an established system for 
data such as disease or vector surveillance. For research-
ers who do not have access to primary data, there may 
be some challenges at the step of obtaining accurate and 
usable data sources. They may only be able to choose 
open source databases for their research.

O1: Samples of infected individuals
Case-specific information is essential for understand-
ing the dynamics of infectious diseases. On-site surveys 
or historical surveillance data are used to gather data on 
infected individuals. The stratification of infections based 
on different dimensions is often necessary.

O2: Demography features
In our increasingly interconnected world, demographic 
factors play a significant role in disease transmission. Fac-
tors such as urbanization, population aging, travel, and 
migration contribute to the spread of epidemics. Under-
standing the links among environmental factors, human 
health, and disease transmission is crucial. Global cli-
mate change, for example, affects the distribution of vec-
tor-, food-, and water-borne diseases and interacts with 
vulnerability factors and disease transmission dynamics. 
Additionally, health equity is closely tied to economic 
growth, healthcare resources, and accessibility of educa-
tional resources. Gathering demographic data, such as 
birth rates, death rates, population numbers, and migra-
tion patterns, from reliable sources such as the World 
Health Organization (WHO), World Bank, or national 
statistical yearbooks, helps inform modelling efforts and 
assess disease risk.

O3: Intervention intensities
Incorporating interventions into disease models allows 
the estimation of the impact of improved diagnostics, 
new drugs, and different control measures. Data on inter-
vention parameters such as treatment efficacy, diagnos-
tic accuracy, and implementation coverage are typically 
obtained through a thorough review of the scientific lit-
erature and relevant studies. These data help assess the 
effectiveness and cost-effectiveness of interventions in 
controlling infectious diseases.

The accuracy and validity of infectious disease models 
can be enhanced by systematically collecting and analyz-
ing relevant data during the observation and data collec-
tion phases. This enables researchers to generate more 
reliable predictions and develop effective strategies for 
disease control and prevention. Once the necessary data 
are collected and observed, the next step is to develop 
a mathematical model representing the transmission 
dynamics of the infectious disease.

D: Developed model
Developing a mathematical model representing the 
transmission dynamics of infectious diseases is a crucial 
step in epidemiological research. This model is a power-
ful tool for simulating and understanding how a disease 
spreads within a population, enabling the exploration of 
different scenarios, assessment of intervention strategies, 
and prediction of future trends. It’s important to note 
that the construction of models should be based on the 
type of disease, research objectives, and available data. 
In this section, models are categorized into data-driven 
models and mechanism-driven models. In   “Choose 
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mathematical theories to formalize”, it is mentioned that 
different models should be selected based on varying 
conditions.

D1: Assumptions and simplification
To select the most appropriate model, researchers start 
with an existing qualitative understanding of the epide-
miological process of the disease and then select it con-
cerning the disease type and the study objectives.

D1.1: Type of disease
Infectious diseases are diseases that arise when a patho-
gen infects an organism and can be transmitted from 
person to person, animal to animal, or animal to human. 
Many different types of infectious diseases have been 
observed, each of which can be broadly classified accord-
ing to its transmission characteristics as gastrointestinal, 
respiratory, contact, blood, and sexually transmitted dis-
eases, as well as animal- and vector-borne infectious dis-
eases. Depending on the categories to which the disease 
under study belongs, researchers can choose between a 
purely human-to-human transmission model or a cross-
population transmission model.

D1.2: Objectives of the study
Models can be used to express the epidemiological pro-
cess of a disease in symbolic numerical formulas that 
quantitatively reveal inner laws, and are used for analysis, 
interpretation, prediction, control, or decision evalua-
tion. Further analytical studies of various types of infec-
tious diseases, specifically disease prediction, estimation 
of transmission capacity, and evaluation of the effective-
ness of interventions, are carried out. For example, when 
simulating the effects of an intervention, the parameters 
and links to be evaluated for a single intervention or a 
combination of interventions must be matched, and the 
parameters are further supplemented or adjusted to eval-
uate the effects of intervention [3]. It is often possible to 
construct a transmission model with single or multiple 
control measures to simulate epidemic trends with single 
or combined measures, and thus assess the effectiveness 
of a particular control measure [3, 4].

D2: Choose mathematical theories to formularize
We classified mathematical  models as either  data-
driven  or  mechanism-driven (Table  1). Data-driven 
models predominantly focus on extracting insights and 
making predictions from existing datasets, while mech-
anism-driven models concentrate more on formulating 
models based on the biological and sociological prin-
ciples underlying disease transmission. These models 
hold distinct applicative values in varying contexts. In 
scenarios characterized by the availability of substantial 

high-quality data combined with a lack of understand-
ing of the underlying mechanisms, the selection of 
data-driven models is advisable. Conversely, when there 
is a comprehensive understanding of the mechanisms 
involved or examining the effects of various interven-
tion strategies, mechanism-driven models become the 
preferred choice. In practical applications, it is often ben-
eficial to integrate both types of models, enabling a more 
holistic understanding and effective response to the chal-
lenges posed by infectious diseases.

D2.1: The data‑driven model
The data-driven model contains a series of models 
exploring the relationship between disease occurrence 
and time, which is an important topic in the mathemati-
cal modelling of infectious diseases in China. Com-
mon methods include time regression, control graph, 
time series, autoregressive integrated moving average 
(ARIMA), Monte Carlo algorithm, grey theoretical, and 
neural network models.

D2.2: The mechanism‑driven model
The mechanism-driven model is classified by different 
research object types and parameters, including (1) group 
and deterministic models, such as transmission dynamics 
models, and (2) individual models and random models, 
such as agent-based models, multi-agent systems, and 
cellular automata.

D3: Analytical/Numerical solutions to model
Except for highly simple models that can be solved ana-
lytically, almost all models are too complicated to find 
analytical solutions and can be solved numerically, 
such as by using a computer. In general, the procedure 

Table 1 Overview of data-driven and mechanism-driven 
models for epidemic modelling

Data-driven models

 Time regression model

 Logistic differential equation model

 Chart controlling method

 ARIMA

 Monte Carlo algorithm model

 Grey theory model

 Neural network model

 Others

Mechanism-driven models

 Ordinary differential equations

 Stochastic individual- or agent-based 
modelling

 Others
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employs model formularization techniques to find solu-
tions for the model. The existence and uniqueness of the 
model solution are inspected in this step. If a solution 
does not exist, then the model development process must 
be re-checked. In some large projects, this step may be 
called “build a computational model for the model.”

E: Examination for model
After developing and analyzing a mathematical model of 
infectious disease transmission, it is crucial to thoroughly 
examine and evaluate it. This step is essential for assess-
ing the validity and accuracy of the model and identifying 
potential areas for improvement. Examining the perfor-
mance of the model can ensure that it aligns with empiri-
cal observations and provides meaningful insights into 
the dynamics of infectious diseases. Ensuring model sta-
bility is an essential aspect of working with mathematical 
or statistical models in the step of examination, particu-
larly when they are applied to complex systems like the 
dynamics of infectious diseases. This process involves 
both statistical techniques and comparisons with empiri-
cal data.

E1: Stability
Model stability refers to the degree of consistency in the 
output of a model when slight variations in the epidemic 
data are observed [5]. In epidemiological research, mod-
els are often used to predict disease transmission trends, 
assess the effectiveness of interventions, and provide a 
theoretical basis for public health decision-making. If 
a model lacks stability, even minor changes in the input 
data can lead to significant variations in the output, 
thereby affecting our understanding of disease dynamics 
and the accuracy of intervention strategies.

E2: Estimation for model
When a model is developed with a specified formulation 
using specific knowledge of the mechanism and mathe-
matics, it must be examined before it can be used for pre-
diction, estimation, or other applications. First, it must be 
determined whether the model is self-consistent; that is, 
it should not be contrary to existing theories. For exam-
ple, if a model asserts that “a basic reproduction number 
less than 2 means the disease will spread over almost 
the entire population,” then something has gone wrong. 
Second, the model must be well organized and robust to 
small amounts of noise and missing data. Such an exami-
nation involves a stability analysis of the model equations, 
and error analysis of the numerical methods used to solve 
the model numerically. After the behavior of the model 
is tested analytically or numerically, it still must be con-
firmed that the model explains the data that are already 
accumulated and whether it is better than the existing 

models. In such an analysis, modelers may implement 
parameter fitting, smoothing, or filtering techniques to 
estimate the state variables and parameters [6, 7].

E3: Parameter estimation and interpretability
Parameters can usually be divided into two categories: 
scenario- and disease-specific. Scenario-specific parame-
ters refer to the differences in transmission from different 
locations, populations, and times, which are represented 
by the transmission rate coefficient. The initial values of 
various variables, such as the number of susceptible per-
sons, infectious sources, and immunized populations in 
the study area, must be set after parameter estimation. 
Disease-specific parameters are commonly used in natu-
ral history. In infectious disease modelling, the calcula-
tion and acquisition of parameters such as incubation 
period (ω), disease duration (γ), etc. usually involves the 
following methods: literature review, epidemiological 
surveys, and data analysis by descriptive statistics.

E3.1: Estimation of transmission‑specific parameters
Transmission-specific parameters mainly include trans-
mission rate (β), population exposure, and probability 
of infection for a single exposure. Such parameters can 
be estimated in two ways: through field surveys, such 
as exposure surveys, and simulations, e.g., the fitting of 
actual epidemic data.

In the cross-sex model, β must be split into the trans-
mission rates between male to male (βmm), male to female 
(βmf), female to female (βff), and female to male (βfm). In 
the model across age groups, β must be split into trans-
mission rate between different age groups (βij) and trans-
mission rate within age groups (βii). In the case of models 
that consider contaminants in the environment, the envi-
ronmental transmission coefficient to the population (βw) 
also must be considered. In the case of cross-population 
models, the transmission coefficient (βa) of the animal or 
vector to the population also must be considered.

E3.2: Estimation of disease‑specific parameters
Disease-specific parameters usually refer to disease nat-
ural history parameters, such as ω, latency period (ωʹ), 
γ, infectious period, proportion of occult infections (p), 
proportion of severe cases (ps), and mortality (f). Such 
parameters are relatively variable among different disease 
species, and differences in parameters between regions 
for the same disease are usually less pronounced than 
those between different disease species. When modeling, 
such parameters can be obtained through first-hand data 
in the field or through references as they are more dif-
ficult to obtain in the field; sensitivity analysis or uncer-
tainty analysis should be carried out appropriately for 
parameters from references.
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E3.3: Estimation of intervention‑specific parameters
Currently, the main preventive and control measures for 
infectious diseases include pharmacological (vaccination 
and medication) and nonpharmacological interventions 
(isolating patients, wearing masks, increasing social dis-
tancing, etc.). The effectiveness of non-pharmacological 
interventions has been confirmed by multiple studies; 
they successfully control the prevalence of various dis-
eases through the strict implementation of various pub-
lic health policies, such as isolating cases, tracing close 
contacts, and social distancing. The corresponding 
parameter for isolating cases is increasing the isolation 
coefficient (φ), increasing the social distance is reflected 
in the population contact degree (x), and wearing a mask 
is reflected in changing the probability of infection with a 
single-contact infection rate (p). The study evaluates the 
effectiveness of vaccination, mainly including the vac-
cination rate (δ) and the vaccine effect parameters. In 
terms of medication treatment, studies have evaluated 
the prevention and control effect of the population; the 
main parameters include the shortening of disease dura-
tion (γ), the reduction of patient severe illness rate (q), 
and the reduction of severe case fatality rate (fc).

L: Linking model indicators and reality
The goal of developing mathematical models for infec-
tious disease transmission is to bridge the gap between 
theoretical insights and practical applications. Although 
models provide valuable insights into the dynamics of 
disease spread, it is crucial to establish a strong link 
between model indicators and real-world observations. 
This ensures that the predictions and recommenda-
tions of the model are relevant, reliable, and actionable 
for disease control and prevention. Finding appropriate 
and accurate indicators based on the scientific questions 
posed by different studies may be challenging for some of 
the researchers who are at the beginning of their research 
work.

L1: Indicators of disease transmissibility
The basic reproduction number (R0) is an important 
indicator of the transmissibility of an infectious disease. 
R0 is defined as the number of new cases generated by 
an infected individual in an otherwise fully susceptible 
population in the absence of interventions. A greater R0 
value indicates greater transmissibility of the infectious 
disease [8].

When R0 < 1, the disease will not cause an epidemic, 
the number of infections will decrease, and the disease 
will be gradually eliminated. When R0 > 1, the disease 
will cause an epidemic. Thus, R0 = 1 is the threshold for 
the transmission of infectious diseases [9].

This definition indicates that the calculation of R0 
requires more stringent conditions, that is, the entire 
population is susceptible. The proportion of the sus-
ceptible population declines gradually as the epidemic 
progresses or interventions are implemented; at this 
point, it is no longer appropriate to use R0 to measure 
propagation capacity. The effective reproduction num-
ber (Reff,) or the time-varying reproduction number (Rt) 
should be applied [10].

L2: Indicators of disease burden, epidemiological 
features, and intervention effectiveness
The total attack rate (TAR) is the percentage of cumula-
tive cases of a disease in the total population during an 
epidemic:

The total asymptomatic infection rate (AIR) is the per-
centage of cumulative asymptomatic infections caused by 
a disease in the total population during an epidemic:

The total infection rate (TIR) is the percentage of 
cumulative infections of a disease in the total population 
during an epidemic:

Thus, TIR = TAR + AIR.
Duration of outbreak (DO) is the time interval from 

the start of transmission of the infectious disease to the 
end of the outbreak [1]. DO can be defined in two ways: 
the time interval from the first case onset to the last case 
onset, that is, calculated from the epidemic curve; and 
the time interval from the first case onset to the last case 
recovery. It is calculated as follows:

where t1 is the date of onset of the first case and t2 is the 
date of onset or recovery of the last case.

Peak incidence is the maximum incidence or number 
of infectious diseases at the shortest wcalculated time 
(e.g., day or week) during an epidemic.

TAR =
Cumulative cases

total population
× 100%.

AIR =
Cumulative asymptomatic infection

total population
× 100%.

TIR =
Cumulative infections

total population
× 100%.

DO = t2 − t1.
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The time of peak incidence is the specific time (e.g., 
date) at which the peak incidence of a disease occurs dur-
ing an epidemic.

The severity rate is the proportion of severe cases in the 
total cases and is one of the most important indicators of 
virulence.

Mortality rate indicates the proportion of deaths due 
to a disease among patients with that disease in a certain 
period and indicates the risk of death for patients with 
that disease [1]:

Secondary attack rate (SAR), also known as secondary 
incidence rate, is an important indicator used to measure 
the spread of an infectious disease. It is the percentage of 
susceptible contacts who develop a disease between the 
shortest and longest incubation periods for certain infec-
tious diseases as a percentage of the total number of all 
susceptible persons:

S: Substitute specified scenarios
In infectious disease modelling, the ability to substitute 
specified scenarios is a fundamental step in bridging 
theoretical insights with practical applications. By sim-
ulating and assessing specific scenarios, researchers can 
gain a comprehensive understanding of the potential 
outcomes of various interventions and policy measures.

S1: Simulating
Building on the groundwork laid out in the previ-
ous five steps, the next crucial phase involves run-
ning the infectious disease model using computational 
methods to simulate various disease transmission 
scenarios. Different diseases exhibit unique modes 
of transmission – airborne, vector-borne, or direct 
contact – each necessitating tailored modelling 
approaches. For instance, models for airborne diseases 
like influenza might emphasize social interactions and 
mobility patterns, while those for vector-borne dis-
eases such as malaria need to factor in environmental 
influences and vector population dynamics. Addition-
ally, the variability in transmission rates, incubation, 
and infectious periods across diseases necessitates the 
incorporation of these differences in scenario plan-
ning, possibly through simulations that vary contact 

Mortality rate =
deaths due to a disease in a certain period

total number of cases
× 100%.

SAR =

Number of cases among susceptible contacts during the incubation period

Total number of susceptible contacts
×100%.

rates or the duration of infectious periods. Population 
settings also play a critical role; factors like popula-
tion density, age distribution, and healthcare access 
profoundly impact disease spread. High-density areas 
might require scenarios accounting for overcrowding, 
whereas rural areas might focus on healthcare acces-
sibility. Cultural and behavioral aspects, such as social 
gathering prevalence or attitudes towards vaccination 
and public health practices, alongside economic factors 
and resource availability, are pivotal in shaping scenario 

development, especially in lower-income settings with 
limited health infrastructure. The specificity of scenar-
ios is equally important; they must be relevant to both 
the disease and its context. For highly infectious dis-
eases like COVID-19, scenarios could range from lock-
down measures to mask mandates, while for Human 
Immunodeficiency Virus/AcquiredImmune Deficiency 

Syndrome (HIV/AIDS), the focus might be on aware-
ness campaigns or antiretroviral therapy coverage. 
Moreover, dynamic adaptation of scenarios is essential, 
responding to evolving disease patterns or new data, 
like emerging virus variants. In this context, collabo-
ration with public health experts and epidemiologists 
who have insights into local conditions and disease spe-
cifics is invaluable, enhancing both the relevance and 
effectiveness of the proposed scenarios in model stabil-
ity assessment.

Researchers can choose to either develop their custom 
model code or utilize pre-existing packages specifically 
designed for infectious disease modelling, such as the 
SimInf and EpiModel packages in R (https:// www.r- proje 
ct. org/), or the epydemic and Eir packages in Python 
(https:// www. python. org/).

Using simulation, researchers can explore the dynamic 
behavior of the disease under different conditions and 
interventions. The model generates predictions and 
projections by the input of specific parameters and 
variables, thereby providing valuable insights into the 
potential outcomes of various interventions and policy 
measures. Simulations enable the assessment of the 
effectiveness of different control strategies and the eval-
uation of the impact of preventive measures on disease 
transmission.

https://www.r-project.org/
https://www.r-project.org/
https://www.python.org/
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S2: Model evaluation
Model fitting methods typically include the least squares 
estimation (LSE), maximum likelihood estimation (MLE), 
root mean square estimation (RMSE), akaike informa-
tion criterion (AIC), and bayesian information criterion 
(BIC). For differential equation models, an algorithm 
that uses an adaptive step selection strategy, along with 
the fourth-order Runge–Kutta method with equidistant 
nodes as the discretization method, is a common algo-
rithm for solving initial-value problems for ordinary dif-
ferential equations (Table 2).

Further goodness-of-fit tests are required to determine 
whether the differences between the model results and 
actual data are statistically significant; the goodness-of-
fit tests used include the chi-square test. The coefficient 
of determination (R2) can also be calculated and tested 
for statistical significance. Cox regression can be used to 
analyze the vaccine effects to determine the time of entry 
into the group and the time to the endpoint. Methods 
such as multiple regression analyses and generalized lin-
ear models are often used to reconcile confounding fac-
tors when analyzing influences. Commonly used software 
includes SPSS (https:// www. ibm. com/ spss), SAS (https:// 
www. sas. com/), R (https:// www.r- proje ct. org/), Python 
(https:// www. python. org/), MATLAB (https:// www. 
mathw orks. com/ produ cts/ matlab. html), and Berkeley 
Madonna (https:// berke ley- madon na. mysho pify. com/).

If the model evaluation results are unsatisfactory, it 
is necessary to revisit Step 3 and reevaluate the model 
assumptions and construction. This iterative process 
ensures that the model aligns with real-world observa-
tions and produces reliable and accurate predictions. 
Once the model evaluation results meet the desired cri-
teria, researchers can proceed with the infectious disease 
modelling process.

S3: Sensitivity
Parameter sensitivity refers to the degree of influence the 
model parameters exert on the model output. In epide-
miological research, a sensitivity analysis of parameters 
is used to assess how changes in specific parameters 

affect a model’s results. By altering the model parame-
ters, researchers can understand the contribution of each 
parameter to the outcome, allowing the modelers to opti-
mize the model and provide more accurate predictions.

The “knock-out” simulation is derived from knock-out 
technology, an experimental technique used in genetics 
in which a normal gene is replaced by a defective gene at 
an identical chromosomal locus, the normal gene thereby 
being "knocked out" by the defective gene. In modelling 
studies, the simulation process sets a parameter to zero 
and estimates its contribution by counting the number 
of reduced cases or the total incidence rate. For exam-
ple, in the SEIARW model, the contribution of environ-
mentally mediated afferents is explored by setting βw to 
0 and reflecting its role by counting the number of cases 
reduced.

The difference between model stability and parameter 
sensitivity lies in their respective focuses. Model stabil-
ity concerns the impact of slight variations in input data 
on the output of the model, whereas parameter sensitiv-
ity focuses on the influence of changes in model param-
eters on the output. Although both concepts involve 
model stability and reliability, model stability primar-
ily addresses the overall stability of the model, whereas 
parameter sensitivity examines the impact of individual 
parameters. In epidemiology, both model stability and 
parameter sensitivity analyses play crucial roles in under-
standing and improving the accuracy of epidemiological 
models.

Conclusions
The MODELS framework offers a systematic and com-
prehensive approach to develop infectious disease mod-
els. By emphasizing the importance of data collection, 
model formulation, consideration of social and ecologi-
cal factors, and model evaluation, this framework pro-
vides a roadmap for generating reliable and actionable 
models. Additional file  1 is a case study based on the 
MODELS framework. By following the MODELS frame-
work, researchers and policymakers can enhance their 
understanding of disease dynamics and make informed 

Table 2 Model evaluation for different models

Model type Key considerations Assessment techniques

Data-driven models Focus on learning from and predicting based on existing datasets MSE, RMSE, R2, AIC, BIC, 
historical fitting, predic-
tive validation, sensitivity 
analysis

Mechanism-driven models Emphasize modelling based on biological and sociological principles of dis-
ease transmission

R2, AIC, BIC, predictive vali-
dation, sensitivity analysis, 
scenario analysis, expert 
review

https://www.ibm.com/spss
https://www.sas.com/
https://www.sas.com/
https://www.r-project.org/
https://www.python.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://berkeley-madonna.myshopify.com/
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decisions to effectively control and prevent infectious dis-
eases. Ultimately, this framework will contribute to global 
efforts to mitigate the impact of infectious diseases.
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