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Human coronaviruses and therapeutic drug 
discovery
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Abstract 

Background: Coronaviruses (CoVs) are distributed worldwide and have various susceptible hosts; CoVs infecting 
humans are called human coronaviruses (HCoVs). Although HCoV‑specific drugs are still lacking, many potent targets 
for drug discovery are being explored, and many vigorously designed clinical trials are being carried out in an orderly 
manner. The aim of this review was to gain a comprehensive understanding of the current status of drug develop‑
ment against HCoVs, particularly severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2).

Main text: A scoping review was conducted by electronically searching research studies, reviews, and clinical trials in 
PubMed and the CNKI. Studies on HCoVs and therapeutic drug discovery published between January 2000 and Octo‑
ber 2020 and in English or Chinese were included, and the information was summarized. Of the 3248 studies identi‑
fied, 159 publication were finally included. Advances in drug development against HCoV, especially SARS‑CoV‑2, are 
summarized under three categories: antiviral drugs aimed at inhibiting the HCoV proliferation process, drugs acting 
on the host’s immune system, and drugs derived from plants with potent activity. Furthermore, clinical trials of drugs 
targeting SARS‑CoV‑2 are summarized.

Conclusions: During the spread of COVID‑19 outbreak, great efforts have been made in therapeutic drug discovery 
against the virus, although the pharmacological effects and adverse reactions of some drugs under study are still 
unclear. However, well‑designed high‑quality studies are needed to further study the effectiveness and safety of these 
potential drugs so as to provide valid recommendations for better control of the COVID‑19 pandemic.
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Background
Coronaviruses (CoVs), which consist of nucleoproteins 
(N), envelope proteins (E), matrix proteins (M), spike 
proteins (S), and many non-structural proteins, are linear 
single-stranded RNA viruses [1]. CoVs are a large fam-
ily of viruses with various susceptible hosts, including 
humans and many other animal species, such as camels, 
cattle, cats, and bats [2]; those infecting humans are called 

human coronaviruses (HCoVs). HCoVs include HCoV-
229E, NL63, OC43, HKU1, severe acute respiratory syn-
drome coronavirus (SARS-CoV), Middle East respiratory 
syndrome coronavirus (MERS-CoV) and SARS-CoV-2 
and are recognized to be important causes of respiratory 
tract infection [3, 4]. The former four types are consid-
ered common HCoVs and usually lead to mild to moder-
ate upper respiratory tract illnesses [4], while the other 
three types are different. After the outbreaks of SARS in 
2002 and MERS in 2012, the world experienced the coro-
navirus disease 2019 (COVID-19) pandemic caused by 
SARS-CoV-2 in 2020. Similar to SARS-CoV, SARS-CoV-2 
appeared unexpectedly and spread throughout the world 
rapidly, with 56 623 643 confirmed cases and 1 355 963  
deaths [5]. Fever and cough are the most common 
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symptoms of COVID-19; patients infected with SARS-
CoV-2 can develop dyspnoea a week after onset, and 
critical patients usually die from uncontrollable sepsis, 
respiratory failure, acute respiratory distress syndrome 
(ARDS) and septic shock [6]. Therapeutic interventions 
excluding virus-specific drugs, are often experiential or 
anecdotal and have not been tested in an integrated trial 
to provide sufficient and widely accepted evidence. The 
most common interventions include a combination of 
antivirals (such as ribavirin and lopinavir/ritonavir) and 
interferons (IFNs), corticosteroids, COVID-19 convales-
cent plasma and supportive treatment for critical patients 
[7].

Previous studies have revealed the invasion mechanism 
of HCoVs. In brief, S1 binds to the relevant receptor and 
induces endocytosis, then the conformation of the S2 
subunit changes. The viral envelope fuses with the endo-
somal membrane and releases the nucleocapsid or viral 
genome [8]. Genomic RNA (gRNA) serves as a transla-
tion template for polyproteins pp1a and pp1ab, which 
are automatically hydrolysed into various non-structural 
proteins (NSPs), such as papain-like protease (PLpro), 
3C-like protease (Mpro), and RNA-dependent RNA pol-
ymerase (RdRp). Full-length gRNA is replicated by nega-
tive sense intermediates and transcribed into subgenomic 
RNA (sgRNA). sgRNA encodes the structural proteins 
of the virus (N, M, E, and S) as well as helper proteins 
(e.g., 3, 4a, 4B, 5, and 8b). Particle assembly occurs in 
the ER-Golgi intermediate compartment (ERGIC) and is 
then released in the vesicle via the secretory pathway [3]. 
Interruption of the proliferation process might help cure 
patients and disrupt transmission. As the understanding 
of both the biological characteristics and pathogenicity 
of HCoVs has deepened, many potent targets for drug 
discovery have been explored, such as inhibiting HCoV 
invasion and strengthening host immune defences. In 
addition, traditional Chinese medicine might be effec-
tive in the fight against HCoVs. To establish additional 
evidence supporting recommended treatment strategies, 
some drugs, such as remdesivir, favipiravir, lopinavir/
ritonavir, arbidol/umifenovir, and hydroxychloroquine, 
have been tested in vigorously designed clinical trials. 
Herein, we review the progress in therapeutic drug dis-
covery and development, including drugs that inhibit the 
CoV proliferation process (attachment and entry, repli-
case expression, replication, transcription and transla-
tion, assembly and release), antiviral drugs that affect the 
action of the host’s immune system, and drugs derived 
from plants with potent activity, in order to accelerate 
drug discovery and development, especially during the 
current pandemic.

Main text
Methodology
Search strategy
We searched two databases: PubMed (https ://www.ncbi.
nlm.nih.gov/pubme d/) and CNKI (www.cnki.net). We 
searched for coronavirus (or HCoV) and important com-
ponents (such as S protein, PLpro, Mpro, NSPs, RNA, N 
protein, E protein, host factors) and drugs (or Chinese 
medicine, plant derivates, or research or treatment). Ref-
erences of studies retrieved were cross checked as well. 
All the search results were evaluated. First, the titles and 
abstracts were screened to identify relevant studies; then, 
full texts were evaluated carefully to determine eligibil-
ity for inclusion. The complete search and selection pro-
cesses were performed by two independent researchers. 
Any disagreements were resolved through consultation 
with a third researcher or team discussion until consen-
sus was reached.

Inclusion criteria
(1) The target coronaviruses were HCoVs, with special 
attention to highly pathogenic HCoVs; (2) The studied 
drugs included newly developed targeted drugs, broad-
spectrum antiviral drugs, small-molecule compounds, 
plant derivatives, etc.; (3) the research performed 
included in vivo or in vitro tests, clinical trials, or litera-
ture reviews; (4) the publication language was English or 
Chinese; (5) the literature type was an article, review, or 
clinical trial; and (6) the publication time was from Janu-
ary 1, 2000, to October 27, 2020.

Exclusion criteria
(1) Duplicate studies; (2) studies for which the full text 
was unavailable; (3) news, reports, interviews, comments, 
patents, letters, or case reports; and (4) reviews or stud-
ies with the aim of elucidating the impact of coronavirus 
infection on the underlying diseases and their treatment 
in a target population.

Data extraction, summary, and analysis
We classified the selected documents according to the 
following categories: (1) antiviral drugs intended to 
inhibit the HCoV proliferation process; (2) antiviral drugs 
that affect the action of the host’s immune system; and 
(3) antiviral drugs derived from plants with potent activ-
ity. All articles were processed using NoteExpress V 3.0 
(Beijing Aegean Technology Co., Ltd., Beijing, China).

Results
The scoping process
A total of 3248 records were retrieved. After excluding 
322 duplicate records, 228 records with unavailable full 
texts, and 2539 records that met the exclusion criteria 
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mentioned above, 159 records were finally included in 
this review. A flow diagram of the study selection process 
is shown in Fig. 1.

The proliferation process as well as the key targets of 
CoVs are presented (Fig. 2). A summary of the progress 
in therapeutic drug discovery and development targeting 
HCoVs is demonstrated below and is divided into three 
sections: drugs that inhibit HCoV proliferation (attach-
ment and entry, replicase expression, replication, tran-
scription and translation, assembly and release), antiviral 
drugs that affect the actions of the host’s immune system, 
and drugs derived from plants with potent activity.

Blocking the HCoV proliferation process is the key 
to identify effective drugs against the virus
The drugs that target the CoV proliferation process are 
summarized in Table 1.

Inhibition of attachment and entry
The process of invasion can be divided into receptor 
binding and endocytosis [2]. Drugs developed from 
viruses or host structures that participate in the above 
two processes have the potential to block virus invasion.

Prevention of  receptor binding The receptor binding 
domain (RBD) is the domain that binds to the receptor 
during HCoV invasion; RBDs have substantial diversity 
[2]. There have been many studies on therapeutic mon-
oclonal antibodies (mAbs), including m336, m337 and 
m338, that target the RBD to prevent MERS-CoV inva-
sion [9] and human-derived SARS-CoV [10, 11]. In addi-
tion to mAbs, receptor-derived proteins based on the 
ligand-binding domain, such as P4 and P5 peptides, can 
be utilized to competitively bind to the RBD [12].

To enter a cell, the RBD needs to bind to a recep-
tor. Thus, in theory, drugs that compete with RBDs for 
receptor binding sites, such as N-(2-aminoethyl)-1-azir-
idineethanamine (NAAE) [13] and anti-dipeptidyl pepti-
dase 4 (DPP4) mAbs, can block CoV invasion [14, 15]. 
However, considering that the receptors on the host cell 
surface also play an important role in the normal metab-
olism and function of the cell, the development of such 
drugs should take into account their impacts on the body, 
such as hypotensive and hypoglycaemic effects. Griffith-
sin (GRFT) can specifically bind to the glycosyl groups of 
protein S, thereby inhibiting virus invasion [16].

Literature iden�fied through 
database searches in
CNKI           (n = 610)
PubMed    (n = 2601)

Searching for full text

Included studies
(n = 159)

Screening the �tle, abstract,
and full text if necessary 

Records with unavailable full 
text excluded (n = 228)

Not meet the inclusion criteria 
or meet the exclusion criteria 

(n = 2539)

Records generated through cross 
checking of references of studies 

retrieved (n = 37)

Total records generated
(n = 3248)

Duplicates records removed 
(n = 322)
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Fig. 1 PRISMA flow diagram of the scoping review process
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Prevention of  endocytosis Inhibitors of host proteases 
that cleave protein S, such as transmembrane protease 
serine 2 (TMPRSS2) inhibitors (camostat [17], nafamo-
stat [18]) and cathepsin L inhibitors (teicoplanin, dal-
bavancin), can prevent exposure and insertion of the 
hydrophobic end of S2 into the endosomal membrane 
[19]. Drugs targeting HR1/HR2, such as HR2P, P1 pep-
tide, 229E-HR1P, 229E-HR2P and OC43-HR2P peptide 
[20–23], can prevent the formation of the 6-helix bun-
dle structure, thereby inhibiting the fusion of the viral 
envelope with the endosomal membrane. Furthermore, 
arbidol [24], LJ001 [25], and NHR trimeric coiled coil 
alpha-helical lipopeptides prevent enveloped virus-cell 
membrane fusion [26]. Arbidol was tested in a clinical 
trial and appeared to reduce the SARS-CoV-2 RNA load 
[27]; however, other studies revealed that Arbidol did 
not improve the clinical outcomes of patients or SARS-
CoV-2 elimination [28, 29]. Attention should be paid to 
host factors that affect endocytosis. For instance, chloro-
quine inhibits endosomal acidification [30, 31], and chlor-
promazine inhibits clathrin-mediated endocytosis [30]. 
Recently, chloroquine phosphate has been recommended 
by Chinese scholars for the treatment of SARS-CoV-2 

[32], but some studies have shown that hydroxychloro-
quine induces cardiotoxicity [33, 34].

Inhibition of replicase expression
In the replication cycle, CoV RNA is first translated into 
two polyproteins, pp1a and pp1ab, which are then hydro-
lysed to generate sixteen NSPs with various functions 
[2]. Certain NSPs are essential for virus replication and 
transcription.

Papain-like protease (namely, NSP3 and PLpro) and 
Achilles’ heel 3C-like protease (also known as NSP5 and 
Mpro) play a vital role in hydrolysing polyproteins to 
generate NSPs [2]. Hence, inhibitors of the two proteases 
can block the generation of NSPs.

PLpro Drugs targeting PLpro include the thiopurine 
analogues 6-mercaptopurine (6MP) and 6-thioguanine 
(6TG), mycophenolic acid [35], disulfiram [36], zinc 
ion  (Zn2+) and zinc conjugate inhibitors [37], as well as 
F2124-0890 [38].

Mpro Drugs targeting Mpro include peptidomimetic 
inhibitors of enterovirus 3Cpro (6b, 6c and 6d) [39], a 
novel series of fused 1,2,3-triazoles [40], lopinavir/rito-

Fig. 2 The CoV proliferation process. TMPRSS2: Transmembrane protease serine 2;  Zn2+: Zinc ion; PLpro: Papain‑like protease; Mpro: 3C‑like 
protease; 3Cpro: 3C protease; POMs: Polyoxometalates; Nsps: non‑structural proteins; NTP: Nucleoside triphosphate; SAM: S‑adenosyl‑l‑methionine; 
RBD: Receptor binding domain; mAb: monoclonal antibodies; ACE2: Angiotensin converting enzyme 2; DPP4: dipeptidyl peptidase 4; HR1: Heptad 
repeat 1 domain; HR2: Heptad repeat 2 domain; gRNA: genomic RNA; sgRNA: subgenomic RNA; siRNA: small interfering RNA; NHR: N‑terminal 
heptad repeat; dsRNA: Double‑stranded RNA
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navir, [30, 41], Ti-containing polyoxometalates (POMs) 
[42], compounds 6–5 derived from pyrithiobac (PTB) 
[43], some molecules such as N3 [44], and synthesized 
compounds (derived from isatin, piperazine, piperidine 
and phenylisoserine) [45–47]. According to a randomized 
control trial published in The Lancet, lopinavir–ritonavir 
was not associated with survival improvement or mortal-
ity reduction [48, 49], so the World Health Organization 
(WHO) terminated related experiments.

Inhibition of replication, transcription and translation
CoV replicase synthesizes the full-length antisense 
genome using gRNA as a template and then synthesizes 
new gRNA according to the sequence of the antisense 
RNA. Thereafter, with the help of RNA polymerase and 
certain transcription factors, the virus recognizes spe-
cific transcriptional regulatory sequences (TRSs) with 
"discontinuous transcription" and selectively transcribes 
all components that make up a mature mRNA. Finally, 
mRNA is translated into a variety of structural proteins 
(nucleocapsid protein N, membrane protein M, envelope 
protein E, and spike protein S) and accessory proteins 
(such as 3, 4a, 4b, 5 and 8b) [2].

Essential NSPs A variety of NSPs play significant roles 
in the replication process, whereas drugs targeting them 
are limited.

NSP12 (RdRp inhibitors): The NSP12 (RdRp) inhibitor 
remdesivir prevents viral replication and thus reduces 
the viral load in patients [50]. However, two recent clini-
cal trials have reached two different conclusions. A study 
published in the Lancet revealed that the drug is not 
effective [51–53], while a study published in New Eng‑
land Journal of Medicine showed that the drug short-
ened the length of hospitalization and virus removal 
time. However, this paper was withdrawn for many rea-
sons [54]. Other drugs include a series of doubly flexible 
nucleoside analogues [55], galidesivir (BCX4430) [56], 
a novel synthetic adenosine analogue, 6′-fluorinated-
aristeromycin analogues [57], and favipiravir. Favipiravir 
has been associated with improvement in chest CT find-
ings [58, 59]. However, the broad-spectrum antiviral drug 
ribavirin had no significant effects on clinical outcomes 
when administered alone for the treatment of SARS [60].

NSP13: With the activity of both nucleotide helicase 
and nucleoside triphosphate (NTP) enzymes, NSP13 
functions to unravel the dsRNA helix. Drugs targeting 
NSP13 not only alter helicase activity [such as aryl dike-
toacids (ADK) and SSYA10-001] [61, 62], but also affect 
NTP enzyme activity [such as bananins and 2,6-bis-aryl-
methyloxy-5-hydroxychromones] [63, 64]. Furthermore, 
molecular docking results showed that 16 halogenated 

triazole compounds could bind to NSP13, with inhibitory 
effects [65].

NSP16 [S-adenosyl-l-methionine (SAM)-dependent 
2′O-MTase]: Drug action mechanisms can be divided 
into two types: direct termination of 2′O-MTase activ-
ity through the alteration of SAM (drugs that utilize 
this mechanism include S-adenosine-1 homocysteine, 
paclitaxel, and aurintricarboxylic acid (ATA) [66]) or 
alteration of 2′O-MTase activity by interfering with the 
binding of NSP16 to NSP10 (drugs that utilize this mech-
anism include complementary reverse peptides designed 
according to the sequence of the NSP16 binding domain 
[66]).

Host signalling pathways Certain host signalling path-
ways are essential for viral replication [3]. The cyclophi-
lin inhibitors cyclosporine and alisporivir regulate the 
interactions of cyclophilin with NSP1 and the calcineu-
rin-NFAT pathway [67–69]. Kinase signal transduction 
inhibitors, such as trametinib and imatinib, block the 
ABL1, ERK–MAPK and PI3K–AKT–mTOR pathways, 
potentially preventing early virus invasion and resulting 
immune disorders [3, 70].

Viral nucleic acids and RNA synthesis complex Various 
small interfering RNAs (siRNAs) can interfere with viral 
replication as well as the expression of structural proteins 
and accessory proteins [71–76]. Mycophenolic acid may 
inhibit viral nucleic acid synthesis [77], but it is advisable 
to combine it with an interferon since its immunosup-
pressive effect may create an environment amenable to 
virus replication and dissemination. In addition, a syn-
thetic chimaeric DNA–RNA hammerhead ribozyme can 
suppress the expression of SARS-CoV RNA [78]. Moreo-
ver, K22 can suppress RNA synthesis by inhibiting the for-
mation of double membrane vesicles (DMVs) [79]. Finally, 
given the existence of replication intermediates, dsRNA-
activated caspase oligomerizer (DRACO) can selectively 
induce apoptosis in cells containing viral dsRNA [80].

Protein N Newly generated RNA needs to bind to pro-
tein N to form a nucleocapsid for stability; protein N also 
plays an important role in the normal replication and 
transcription of gRNA [2]. Therefore, drugs targeting 
protein N, such as fibronectin-based intrabodies and the 
inhibitors PJ34 and resveratrol, may influence these pro-
cesses [81–83].

Inhibition of assembly and release
Viral assembly occurs in the ERGIC, where proteins M 
and E play important roles [2]. Hexamethylene amiloride 
[84] blocks the E protein ion channel. CoV particles in 
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ERGIC are transported through the secretory pathway in 
vesicles and released through exocytosis [2].

The interactions between the cytoskeleton and struc-
tural proteins are essential for the assembly and release 
of CoVs [3]. For example, nocodazole may reduce the 
amount of transmissible gastroenteritis virus (TGEV), 
which belongs to the genus α-CoV and shares a simi-
lar assembly and release mechanisms with HCoV-229E 
and HCoV-NL63, particles released from the body [85]. 
Nonetheless, the advantages and disadvantages must be 
considered before administering the drug due to the sig-
nificant role of the cytoskeleton in the normal metabo-
lism and functioning of cells.

Drugs that affect the action of the host’s immune system 
could help relieve the symptoms
Innate immunity
Complement activation and IFNs are believed to play an 
active role in the innate immune response against HCoVs.

Complement activation Inhibition of complement acti-
vation alleviates acute lung injury induced by SARS-CoV 
and MERS-CoV infection. For instance, anti-C5aR anti-
body treatment resulted in decreased viral replication 
in lung tissues in hDPP4-transgenic mice infected with 
MERS-CoV. SARS-CoV-infected  C3−/− mice exhibited 
significantly less weight loss and less respiratory dysfunc-
tion despite an equivalent viral load in the lungs [86–88].

IFNs. IFN-α/β (IFN-1) is an important component 
of innate immune defence, which protects mammalian 
hosts from viral infection [89]. While mild HCoV infec-
tions, such as infection by HCoV-229E, typically induce 
a high level of IFN-I production [90], SARS-CoV and 
MERS-CoV were shown to suppress the activation of the 
host innate immune response by inhibiting interferon 
production or signalling. Several structural proteins (M 
and N) [91–93], NSPs (NSP1 and NSP3) [94–96], and 
accessory proteins of SARS-CoV and/or MERS-CoV were 
identified as IFN antagonists [92]. In addition to inhibit-
ing CoV replication, drugs targeting these proteins may 
work by unblocking IFN suppression by the CoV. IFN has 
been clinically indicated to be effective for the treatment 
of SARS-CoV and MERS-CoV. In clinical treatment, the 
routine use of IFNs is not recommended for SARS-CoV 
treatment [97]. IFNs are usually administered in com-
bination with other drugs, such as IFN-β-1b  combined 
with  lopinavir/ritonavir [98] or ribavirin  and IFN-α 
combined with lopinavir/ritonavir [99], for MERS-CoV 
treatment. In severe to critical COVID-19 patients, early 
treatment with IFN-α2b can reduce in-hospital mortality, 
but it has no significant benefit in moderately ill patients 
[100].

Cell‑mediated immunity
Lymphocytopenia is commonly observed in patients 
infected with SARS-CoV [97], MERS-CoV [101], or 
SARS-CoV-2 [102], but the mechanism remains unclear. 
Human T cells are highly susceptible to MERS-CoV 
infection. Studies have demonstrated that MERS-CoV 
persists in T cell-deficient mice but is cleared in B cell-
deficient mice, suggesting that T cells play a critical role 
in MERS-CoV clearance [103]. SARS-CoV-specific T 
cells also play important roles in the recognition and 
clearance of infected cells [104].

Humoural immunity
Antibodies play an important role in preventing CoV 
infection. Antibody production against protein S was 
less in SARS-CoV-infected patients with fatal outcomes 
than in non-severe patients [105]. The level and pres-
ence of antibodies are related to the clinical severity of 
SARS and MERS [106, 107]. Experiments have shown 
that antibody therapy improves symptoms and promotes 
recovery. SARS-CoV-specific monoclonal antibodies 
include human mAb CR3014 [10], CR3022 [108], and 
5H10 [109]. MERS-CoV-specific monoclonal antibod-
ies include m336 [110], REGN3051, REGN3048 [111], 
3B11-N [112], LCA60 [113], MCA1 [114], MERS-4, 
MERS-27 [115], MERS-GD27, and MERS-GD33 [116]. 
Serum cross-reaction is important for both detection and 
treatment. Studies have shown the absence of cross-reac-
tivity between SARS-CoV and MERS-CoV. The SARS-
CoV-specific human monoclonal antibody CR3022 can 
effectively bind to the RBD of SARS-CoV-2 [117].

Convalescent plasma
Convalescent plasma therapy may be beneficial for 
patients with early SARS infection because it provides 
antibodies from convalescent patients [118], but evidence 
of its efficacy in MERS-CoV patients is still lacking. It 
is recommended for the treatment of rapidly progress-
ing, severe and critical cases of SARS-CoV-2 infection 
[99], but it is limited by safety concerns and inadequate 
sources. Trials indicate that convalescent plasma is most 
effective in reducing mortality when administered in 
the early stage of infection, but it does not significantly 
shorten the time to recovery [119, 120].

Glucocorticoids
Corticosteroids not only suppress lung inflammation 
but also inhibit immune responses and pathogen clear-
ance. Available observational data suggest impaired 
clearance of SARS-CoV and MERS-CoV as well as 
increased complication rates in survivors receiving cor-
ticosteroid therapy. Therefore, it is not advisable to 
administer corticosteroid treatment in patients with 
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SARS-CoV-2-associated lung injury or shock outside 
of a clinical trial setting [121]. Recent clinical trials sug-
gest that early, low-dose methylprednisolone adminis-
tered in the short term improved clinical outcomes and 
reduced mortality in severe COVID-19 patients [122–
124]. Guidelines from China recommend that glucocor-
ticoids should be used in the short term as appropriate 
in patients with progressive deterioration of the oxygena-
tion index, rapid radiographic development, and exces-
sive activation of the inflammatory response [99].

IL‑6 receptor inhibitors
IL-6 plays an important role in the development of a 
cytokine storm. As an IL-6 receptor inhibitor, tocili-
zumab does not prevent the disease from progress-
ing, but it can reduce the symptoms of serious infection 
[125–127].

Clinical trials of drugs targeting SARS-CoV-2 are sum-
marized in Table 2.

Plant‑derived Chinese medicine might have antiviral effect
Single Chinese medicines and their associated active 
ingredients
SARS‑CoV‑2 The traditional Chinese medicine compo-
nents that might block the binding regions of grid3 and 
grid4 between angiotensin converting enzyme 2 (ACE2) 
and viral protein S include Folium mori, Atractylodes 
lancea, Fritillaria, Zingiber officinale, Lonicerae japoni‑
cae flos, Forsythia suspensa, and Amomum tsao‑ko [143]. 
SARS-CoV-2 leads to the downregulation of ACE2 upon 
binding to the receptor, thus disrupting normal regula-
tion of the ACE-Ang II and ACE2-Ang-(1–7) axes, con-
sequently inducing multiple organ damage. Astragalus, 
Panax ginseng, Dioscorea spp., and arecae semen, which 
are major components of traditional Chinese medicine 
preparations for COVID-19 pneumonia, have shown a 
regulatory effect on the renin–angiotensin–aldosterone 
system (RAAS) [144]. Quercetin and its derivatives have 
strong binding ability to ACE2 and IL-6R and have the 
potential to inhibit the cytokine storm by blocking SARS-
CoV-2 and IL-6 binding. In addition, licorice, ephedra, 
Bupleurum root, etc., also have different IL-6R binding 
abilities [145–147]. Saikoside A and saikoside D had good 
affinity with Mpro and ACE2 of SARS-CoV-2 [148]. The 
binding strengths of baicalein and SARS-CoV-2 Mpro are 
the same as those of lopinavir and remdesivir, and the bond 
to ACE2 is relatively stable [149]. Liquiritin apioside, iri-
din, liquiritin, forsythiaside, procyanidin B-5,3′-o-gallate 
and saikosaponin C are latent active RdRp inhibitors, and 
their flavonoid structures may be potential active groups 
that induce RdRp inhibition [150]. Aster pentapeptide A, 
ligustrazine, salvianolic acid B, etc., have potential inhibi-
tory effects on SARS-COV-2 Mpro, while gingerol, gin-

nol, ferulic acid, etc., have potential inhibitory effects on 
SARS-COV-2 PLpro [151]. Hypericin and baicalein can 
bind to SARS-CoV-2 NSP14 and interact with key amino 
acid residues in the active centre [152].

SARS‑CoV Glycyrrhizin [128, 129] is capable of inhib-
iting the invasion and replication of SARS-CoV in vitro, 
and various derivatives [130] (such as the introduc-
tion of 2-acetamide-glucan amine into the glycyrrhizin 
chain) may account for increased anti-SARS-CoV activity 
along with enhanced cytotoxicity. Lycorine from Lycoris 
radiata and ZZ-1 [131, 132] may inhibit SARS-CoV rep-
lication. Polysaccharides and ethyl acetate extracts from 
Houttuynia cordata act on the body’s immune system 
with anti-complement activity, among which afzerin and 
quercetin also have antipyretic effects [133]. Houttuynia 
cordata also promotes the inhibition of RdRp [134]. Lung 
injury caused by SARS-CoV is associated with inflamma-
tion due to cytokine storms and neutrophil infiltration. 
Thus, inhibiting cAMP-PDE, which plays a key role in 
the inflammatory response, may help prevent inflamma-
tion. Rhizoma phragmitis, Folium isatidis, honeysuckle, 
forsythia, perilla leaf, mint and Astragalus significantly 
inhibit cAMP-PDE activity [135]. Multiflorum and Rheum 
rhabarbarum, specifically its extract-derived compo-
nent emodin, affect virus invasion [136]. Protease inhibi-
tors of natural origin include 3CLpro inhibitors (such as 
quinone-methide triterpenes extracted from Tripteryg‑
ium regelii [137], dieckol from Ecklonia cava [138], and 
extracts of Houttuynia cordata and Rheum rhabarbarum 
[134, 136]) and PLpro inhibitors (such as diarylheptanoids 
from Alnus japonica [139], and phenolic phytochemicals 
from the seeds of Psoralea corylifolia [140]). Finally, chal-
cone 6 from Angelica keiskei and tanshinones from Salvia 
miltiorrhiza are capable of inhibiting both 3CLpro and 
PLpro [141, 142].

MERS‑CoV Silvestrol [153], an inhibitor of eIF4A, can 
inhibit viral mRNA cap-dependent translation. In addi-
tion, research on MERS-CoV 3CLpro suggests that fla-
vonoids such as herbacetin, isobavachalcone, quercetin 
3-β-D-glucoside and helichrysetin [154] can act as inhibi-
tors.

HCoV‑229E 3β-Friedelanol [155], a triterpenoid 
extracted from the leaves of Euphorbia neriifolia, showed 
stronger antiviral activity than actinomycin D, the positive 
control. Furthermore, silvestrol [153], an eIF4A inhibitor, 
affects the translation of HCoV-229E.

HCoV‑NL63 Caffeic acid, which is related to the etha-
nol extract of Sambucus FormosanaNakai [156], has been 
confirmed to have a significant inhibitory effect on the 
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invasion of HCoV-NL63, possibly by directly interfering 
with the binding of HCoV-NL63 to ACE2 and co-recep-
tors, such as heparin sulphate proteoglycan.

Compound traditional Chinese medicines
SARS‑CoV‑2 Based on the Chinese COVID-19 diag-
nosis and treatment scheme, ageratum upright capsules 
(in the form of pills, water, or oral liquid), Jinhuaqing-
gan particles, Lianhuaqingwen capsules (particles) and 
Shufengjiedu capsules (particles) are recommended dur-
ing the SARS-CoV-2 medical observation period, while 
Qingfeipaidu soup (including Maxingshigan soup, She-
ganmahuang soup, Xiaochaihu soup, Wuling powder), 
Xiyanping injection, Xuebijing injection, Reduning injec-
tion, Tanreqing injection, Xingnaojing injection, Shenfu 
injection, Shengmai injection and Shenmai injection are 
recommended in the clinical phase [99].

SARS‑CoV The Ministry of Science and Technology 
of China has announced eight Chinese medicines that 
have been clinically confirmed to improve symptoms in 
SARS patients: Qingkailing injection, Houttuynia cordata 
injection, Radix isatidis granules, Xinxue granules, Jinlian 
Qingre granules, Dengzhanxixin injection, compound 
Kuh-seng injection and Xiangdan injection. In addition, 
Qingqi Liangying oral liquid and Qingwen oral liquid, and 
Jiedu pills, as well as anti-SARS I and anti-SARS II showed 
effective inhibitory effects on SARS-CoV [157] (Table 3).

Discussion
As of November 13, 2020, SARS-CoV-2 had infected  
53 218 786 people worldwide and killed a total of 1 301 
631 people. Unfortunately, the epidemic is still not under 
control in many countries. Despite a lack of HCoV-spe-
cific drugs, many potent targets for drug discovery have 
been explored, and many vigorously designed clinical 
trials are being carried out in an orderly manner. In the 
present study, we analysed the pathogenesis of and drug 
therapy targeting seven HCoVs, including four common 
types (HCoV-229E, -OC43, -NL63, -HKU1) and three 
highly pathogenic types (SARS-CoV, MERS-CoV, SARS-
CoV-2); special attention was given to SARS-CoV-2.

Among the highly pathogenic CoVs, SARS-CoV trans-
mission has been rare since 2004, so clinical trials of 
drugs and vaccines are difficult to carry out. To date, 
there are no specific drugs or vaccines against MERS-
CoV. mABs, such as m336 [9], lopinavir/ritonavir [30], 
IFN [98, 99], etc., are potential antiviral drugs against 
MERS-CoV, but additional evidence is needed to deter-
mine their efficacy.

Because COVID-19 is a new, acute, severe infectious 
disease, the anti-SARS-CoV-2 drug development strat-
egies are to screen existing drugs to identify potentially 

effective drugs, to expand indications and to develop 
a vaccine. The safety of conventional drugs has been 
mostly verified; if effective, they can be quickly applied 
in clinical practice. To date, thousands of clinical trials 
of SARS-CoV-2 have been registered worldwide. Hot 
topics include antiviral drugs such as RaRp inhibitors 
[51–54, 59], Mpro inhibitors [48, 49], chloroquine and 
its derivatives [33, 34], viral envelope inhibitors, arbidol 
[27, 29], and immunotherapy drugs such as IFNs [100] 
and cytokine storm inhibitors [122, 123, 125–127]. Usu-
ally, the duration from initial experimental research to 
clinical trial completion is long. However, due to the 
COVID-19 pandemic, many drugs have been entered 
into clinical trials that are not randomized, controlled, or 
double-blinded. Their efficacy, toxicity, and side effects 
are discovered during application. For example, it was 
previously reported that hydroxychloroquine and chlo-
roquine acted against coronavirus, and the synergistic 
use of hydroxychloroquine and azithromycin reduced the 
viral load and improved clinical results. However, later 
studies found that the heart-related side effects of these 
drugs included extension of the QT interval, so the WHO 
terminated the studies [33, 34]. Clinical trials found that 
lopinavir/ritonavir had a poor effect on COVID-19, while 
others, such as arbidol [27, 29], remdesivir [51–54], favi-
piravir [59], IFN-α2b [100], convalescent plasma [119, 
120], corticosteroids [122, 123] and tocilizumab [125–
127], had different and even opposite results, which can 
be further validated by experimental evaluation and 
clinical experience. When the production of inflam-
matory factors is increased, convalescent plasma, cor-
ticosteroids, and tocilizumab should be used early and 
in appropriate amounts. Because most traditional Chi-
nese medicines are compounds and few single drugs or 
single active ingredients are used, it is difficult to deter-
mine which ingredients are effective in clinical trials. It 
is hard to differentiate the compounds associated with 
the mechanism. In a laboratory study of a single active 
ingredient, glycyrrhizin had a strong inhibitory effect on 
SARS-CoV-2 [128, 129], which is of great significance for 
further clinical study. The future research direction for 
traditional Chinese medicine is to identify and modify 
a single potent drug or active ingredient and adjust the 
compound dose and administration method.

This review summarized the conventional and potential 
drugs at according to each action site, which can improve 
clinicians’ understanding of the results of current clini-
cal studies to guide clinical decisions. It also enables 
researchers to understand drug action sites to discover 
potential effective drugs.
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Conclusions
This review summarized the progress in drugs that 
inhibit the HCoV proliferation, affect the action of the 
host’s immune system as well as plant-derived Chinese 
medicines, which not only provides researchers a more 
comprehensive understanding of the current status of 
drug development against HCoVs, but also provides 
directions for further exploration. However, the phar-
macological effects and adverse reactions of some drugs 
under study are still unclear, and hence well-designed 
high-quality studies are needed to further study the effec-
tiveness and safety of these potential drugs in order to 
accelerate drug development targeting SARS-CoV-2 and 
thus promote progress towards ending the pandemic.
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